XX Oscillation Models

XX.1 Complex number

For a complex variable z € C, the power series expansion of e? is

z z¢ Zz° x™
Z -_— — — — 00— cee .
e _1+1!+2!+3!+ T+ (XX.1)

For areal variable x € R, the power series expansions of sinx and cosx are
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From Eq. XX.1, Eq. XX.2 and Eq. XX.1, we can obtain the so-called Euler’s formula:
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The Euler’s formula establishes the fundamental relationship between trigonometric
functions and exponential functions.

Next, we introduce two very useful propositions.
Proposition XX.1. C € Cis a real number if and only if C = C.

Proposition XX.2. Let C;, C, € Cbe complex numbers, a, b, t € R real numbers. If
y = C,e(@+bdt 4 ¢, gla=bi)t (XX.5)
is real, then y can be expressed as
y = Ae%cos(bt + ¢) (XX.6)

where A is a positive real number and ¢ is a real number.

Proof. If y(t) isreal, theny =y, i.e.
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This yields C; = C,.
Let C; = Cg + iC;, Cg, C; € R. y can be rewritten as

y = Cle(a+bi)t + Cze(a—bi)t
= (CR + iCI)e(a+bi)t + (CR - I:Cl)e(a_bi)t
— eat{CR(eibt + e—ibt) + iCI(eibt _ e—ibt)}
= 2e%(Crcos(bt) — C;sin(bt))
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= Ae®cos(bt + ¢)

XX.2 Free oscillation

As shown in Fig. XX.1, a small ball with mass m is attached on one end of a massless
spring with a force constant k while the other end of the spring is fixed. The equilibrium
position of the ball is at x = 0. The ball is gently and slowly pulled to the position x = x,
and then released. Friction is negligible. According to Newton'’s law and Hooke's law, the
motion of the ball can be described as

d2x(t)
m F = —kX(t) (XX7)

The general solution to Eq. XX.7 is
x(t) = Acos(wt + @) (XX.8)

where w = \/% is called the angular frequency with the unit radians/second; T = %ﬂ is

the period with the unit second; f = 1/T is the frequency with the unit Hz; ¢ is the phase
angle with the unit radians; A is the amplitude with the unit meter.



Figure XX.1. Schematic drawing of a free oscillator. A mass is attached on one end of a spring
whereas the other end of the spring is fixed.

In order to make a connection between eigenvalues and frequencies, we rewrite Eq.
XX.1 in a matrix form:

d rx x
o [y] = A [y] (XX.9)
where y(t) = x(t), and
7o 1
A = [—a)z O]
The matrix A has eigenvalues +iw and corresponding engenvectors [1, +iw]’, i? = —1.

Therefore, the general solution to Eq. XX.9 is
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[y] = cye [iw] + e [_iw (XX.10)
Thus, using Proposition XX.2 yields the real solution
x(t) = c;e't + c,e ™t = Acos(wt + @) (XX.11)

Using the initial conditions x(0) = x, and x(0) = 0, we obtain the solution to Eq. XX.7:

x(t) = xpcos(wt) (XX.12)



Here we notice that the positive imaginary part of the eigenvalues of the matrix A is the
angular frequency.

XX.3 Damped oscillation

Taking friction into account, we need to include a drag force which is anti-proportional
to the velocity of the ball in Eq. XX.7. In this case, the energy of the oscillator leaks to its
environment in the form of heat. This effect is called energy dissipation. Because of energy
dissipation, the free oscillation will decay with time, which is called damped oscillation. A
damped oscillation system can be described as

d?x dx
= —ky—ph— XX.13
mdt2 kx bdt ( )

where the constant b is called the drag coefficient.

Let wy = \/% andy = %. Then Eq. XX.13 becomes

d?x dx
F + a)(z,x + ZVE =0 (XX14)

Substituting z = Ae!Pt*% into the equation Eq. XX.14, we obtain
—p? + wi +i2py =0 (XX.15)

If p is areal number, p = 0 and w, = 0, which is not true by the definition of w,. So p must
be an imaginary number. Suppose p = w' + is.

First, we consider the case of y < w,, which is called under-damping. From Eq. XX.15,
we obtain

and
7 = Aei(pt+a) — Aei(wrt+ist+a) — Ae—stei(wrt+a) (XX.16)

Thus Eq. XX.13 has a real solution



x(t) = Ae "'cos(w't + a) (XX.17)

where A and «a are determined by initial and boundary conditions.

In order to make the connection between eigenvalues and frequencies, we rewrite Eq.
XX.14 in a matrix form:

dit[;] = A [;] (XX.18)
where y(t) = x(t), and
Aa = [—2)5 —1)/]

The matrix A, has eigenvalues —y + iw’ and corresponding eigenvectors [1, —y + iw']”.
Therefore, the general solution to Eq. XX.18 is

[;] = e V/?{c et [ii)’] + c et [_;,lw,]} (XX.19)
Thus, from Proposition XX.2, the real solution is
x(t) = Ae "cos(w't + a) (XX.20)
Using the initial conditions x(0) = x, and x(0) = 0, we obtain the solution
x(t) = xpe " cos(w't) (XX.21)

Here we notice that the positive imaginary part of the eigenvalues of the matrix A is the
angular frequency.

Overdamping

When y > w,, itis called overdamping. In this case,
w' = +(y? — wd)'/? (XX.22)

The general solution for overdamping is

x(8) = 77 (cye =08 "t 4 e (-ud) ) (XX.23)



Critical damping

When w, = v, it is called critical damping. In this case, the general solution is

x = (A+ Bt)e "t (XX.24)

XX.4 Forced oscillation

If the oscillation is driven by an external force Fycos(wpt), Eq. XX.13 needs to include
the external force effect:

d?x dx
m——=—kx —b—

XX.25
112 i + Fycos(wpt) ( )

Consider Eq. XX.25 as the real part of z satisfying

2z 5 Fo o
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We have derived the general solution Eq. XX.20 to the homogeneous equation of Eq. XX.26.
Now we need find a particular solution to the inhomogeneous equation Eq. XX.26. Because
wp will be the dominant frequency after a long time, we assume a steady state solution has
the form of z = Ae/(®pt=9) Substituting z = Ae/(®pt=9) into Eq. XX.26, we obtain

F, .
—w3z + wiz + 2ywpjz = Eoef“’Dt (XX.27)

Cancelling e/(@pt=%) in both side yields
2 2 . FO . FO .
A(—wp + w§ + 2ywpj) = —cos(d) + j —sin(6)
m m
or
F
A(—w3 + wd) = EOCOS((S)
24y = Lsins
ywp = —sin(4)

Using sin?(8) + cos?(8) = 1, we obtain
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Equation Eq. XX.26 has a real solution
x = Acos(wpt — §) (XX.28)

The solution does not depend on any initial conditions. At w,,q, = (w3 — 2¥*)Y?, Apax =
Fy Q

R Q _ Wo. .
- (1—%)1/2 , where Q _Is called the quality factor.

The general solution of the driven system Eq. XX.25 is the sum of Eq. XX.28 and Eq. XX.20:
x = Acos(wpt — 6) + Xe Vcos(w't + a) (XX.29)

The first term is the steady state solution, the second term is the transient solution which
will eventually decay.

Consider the work done to the system by the external force:

dw =F - dx (XX.30)
and the power
p W _p & (XX.31)
t dt

Applying to the steady state Eq. XX.28 of the driven system since the transition state will
die out, we obtain

P = Fv = Fycos(wpt)[—wpAsin(wpt — §)] (XX.32)

The average P in a cycle is
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It is easy to see that

1) If y - o, P > 0. It means that if the friction is very large, the external force does
no useful work.

2) If m - oo, P - 0. It means that if the mass is very large, the external force does no
useful work.

3) If Fy = 0, P - 0.1t means that no force.

4) If wp = o, P — 0. It means that the driving force oscillates too fast to do useful
work.

5 Ifw-0, P — 0. It means that the driving force oscillates too slow to do useful work.
_ _ 2
6) Ifw = wy, P = Ppox = 4%’)/. It means the driving force does maximum useful work to

the system. This is called the resonance phenomena.

XX.5 Electron oscillation

Consider an atom in an oscillating electric field E = E(t) along the z-direction. We
assume a particular electron of this atom is oscillating around z = 0. The motion of the
electron can be described as

e
Z+2nz+ 03z =a(t) where a(t)= _EE(t) (XX.34)

where m and —e are the electron’s mass and charge, m23 is the spring constant of the
linear oscillator, 2mn the friction coefficient.



XX.5.1 Green’s function

We assume there is a linear relationship between position z and acceleration a:
z(t) = [ dsI'(t,s)a(s) (XX.35)

where [ is a Green’s function.

Because the coefficients of Eq. XX.34 do not depend on time t, we have I'(t,s) = I'(t — s),
and thus

z(t) = [ dsI'(t — s)a(s) = [ dil'(v)a(t — 1) (XX.36)

The displacement z is caused by the acceleration a. Causes must be earlier that their effect.
Therefore

t

z(t) = f I'(t—s)a(s)ds = f I'(t)a(t —1)dr (XX.37)
—00 0
Taking derivative with respect to time t in Eq. XX.37, we obtain:
t .
z(t) =T 0)a(t) + f dsI'(t —s)a(s) (XX.38)
We differentiate Eq. XX.38 with respect to time t:
. t ..
Z(t) =TI 0)a(t) +I'0)a(t) + j dsI'(t —s)a(s) (XX.39)

Inserting Eq. XX.38 and Eq. XX.39 into Eq. XX.34 yields
I'+2nl +0ir =0 (XX.40)
and
r)=0 and =1 (XX.41)

From Section XX.3, we know if /0, < 1, Eq. XX.40 has a general solution:



r(r) = c,eCn+idt 4 pCn-idt - 0= 102 —p2 (XX.42)
Using initial conditions Eq. XX.41, we obtain
1
re) = Ee""sinﬂr (XX.43)
Substituting Eq. XX.43 into Eq. XX.37 results in the solution

2(t) = %e fo I (E - 1)dr = ;—; jo "dTE(t — e Tsind (XX.44)

XX.5.2 Susceptibility

The dipole moment of the above considered electron is p = —ez. If there are N of them per
unit volume, the polarization is P(t) = Np. Using Eq. XX.44, we obtain:

Ne? (®
P(t) = Np = —eNz(t) = 7[ dtl'(t)E(t — 1)
0

©  Ne? (XX.45)
= f d T[TH(T)F(T)]E(t )
where H(7) is the Heaviside step function.
Fourier transforming Eq. XX45 results in
P(w) = epx(w)E(w) (XX.46)
where
E(w) = [dw e E(t) (XX.47)

and
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x = x(w) is called the susceptibility of the material under study. It is a function of angular

frequency. Its imaginary part

Ne? 2nw
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Im x(w) =

has the following properties: Eq. 15 8¢ Eq. 16 & I [ [ JEARHE :
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* Resonance frequency w = ().

(XX.49)



