
XX   Oscillation Models 

XX.1   Complex number 

      For a complex variable 𝑧 ∈ ℂ, the power series expansion of 𝑒𝑧 is 
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For a real variable 𝑥 ∈ ℝ, the power series expansions of sin𝑥 and cos𝑥 are 
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From Eq. XX.1, Eq. XX.2 and Eq. XX.1, we can obtain the so-called Euler’s formula: 

cos𝑥 =
𝑒𝑖𝑥 + 𝑒−𝑖𝑥

2
;       sin𝑥 =

𝑒𝑖𝑥 − 𝑒−𝑖𝑥

2𝑖
 (XX.4) 

The Euler’s formula establishes the fundamental relationship between trigonometric 
functions and exponential functions. 

      Next, we introduce two very useful propositions. 

Proposition XX.1. 𝐶 ∈ ℂ is a real number if and only if 𝐶 = 𝐶‾. 

Proposition XX.2. Let 𝐶1, 𝐶2 ∈ ℂ be complex numbers, 𝑎,  𝑏,  𝑡 ∈ ℝ real numbers. If 

𝑦 = 𝐶1𝑒(𝑎+𝑏𝑖)𝑡 + 𝐶2𝑒(𝑎−𝑏𝑖)𝑡 (XX.5) 

is real, then 𝑦 can be expressed as 

𝑦 = 𝐴𝑒𝑎𝑡cos(𝑏𝑡 + 𝜙) (XX.6) 

where 𝐴 is a positive real number and 𝜙 is a real number. 

Proof.  If 𝑦(𝑡) is real, then 𝑦 = 𝑦, i.e. 



𝐶1𝑒(𝑎+𝑏𝑖)𝑡 + 𝐶2𝑒(𝑎−𝑏𝑖)𝑡 = 𝐶1
‾ 𝑒(𝑎−𝑏𝑖)𝑡 + 𝐶2

‾ 𝑒(𝑎+𝑏𝑖)𝑡 

or 

(𝐶1 − 𝐶2
‾ )𝑒(𝑎+𝑏𝑖)𝑡 + (𝐶2 − 𝐶1

‾ )𝑒(𝑎−𝑏𝑖)𝑡 = 0 

This yields 𝐶1 = 𝐶2
‾ . 

Let 𝐶1 = 𝐶𝑅 + 𝑖𝐶𝐼 , 𝐶𝑅 , 𝐶𝐼 ∈ ℝ. 𝑦 can be rewritten as 

𝑦 = 𝐶1𝑒(𝑎+𝑏𝑖)𝑡 + 𝐶2𝑒(𝑎−𝑏𝑖)𝑡

= (𝐶𝑅 + 𝑖𝐶𝐼)𝑒(𝑎+𝑏𝑖)𝑡 + (𝐶𝑅 − 𝑖𝐶𝐼)𝑒(𝑎−𝑏𝑖)𝑡

= 𝑒𝑎𝑡{𝐶𝑅(𝑒𝑖𝑏𝑡 + 𝑒−𝑖𝑏𝑡) + 𝑖𝐶𝐼(𝑒𝑖𝑏𝑡 − 𝑒−𝑖𝑏𝑡)}

= 2𝑒𝑎𝑡(𝐶𝑅cos(𝑏𝑡) − 𝐶𝐼sin(𝑏𝑡))

= 2√𝐶𝑅
2 + 𝐶𝐼

2 𝑒𝑎𝑡 (
𝐶𝑅

√𝐶𝑅
2 + 𝐶𝐼

2
cos(𝑏𝑡) −

𝐶𝐼

√𝐶𝑅
2 + 𝐶𝐼

2
sin(𝑏𝑡))

= 𝐴𝑒𝑎𝑡cos(𝑏𝑡 + 𝜙)

 

 

 

XX.2   Free oscillation 

      As shown in Fig. XX.1, a small ball with mass 𝑚 is attached on one end of a massless 
spring with a force constant 𝑘 while the other end of the spring is fixed. The equilibrium 
position of the ball is at 𝑥 = 0.  The ball is gently and slowly pulled to the position 𝑥 = 𝑥0, 
and then released.  Friction is negligible. According to Newton’s law and Hooke’s law, the 
motion of the ball can be described as  

𝑚
𝑑2𝑥(𝑡)

𝑑𝑡2
= −𝑘𝑥(𝑡) (XX.7) 

        The general solution to Eq. XX.7 is  

𝑥(𝑡) = 𝐴cos(𝜔𝑡 + 𝜑) (XX.8) 

where 𝜔 = √
𝑘

𝑚
  is called the angular frequency with the unit 𝑟𝑎𝑑𝑖𝑎𝑛𝑠/𝑠𝑒𝑐𝑜𝑛𝑑; 𝑇 =

2𝜋

𝜔
  is 

the period with the unit 𝑠𝑒𝑐𝑜𝑛𝑑; 𝑓 = 1/𝑇 is the frequency with the unit 𝐻𝑧; 𝜑 is the phase 
angle with the unit radians;  𝐴 is the amplitude with the unit 𝑚𝑒𝑡𝑒𝑟. 



 

Figure XX.1. Schematic drawing of a free oscillator. A mass is attached on one end of a spring 
whereas the other end of the spring is fixed.  

 

      In order to make a connection between eigenvalues and frequencies, we rewrite Eq. 
XX.1 in a matrix form: 

𝑑

𝑑𝑡
[
𝑥
𝑦] = 𝒜 [

𝑥
𝑦] (XX.9) 

where 𝑦(𝑡) = 𝑥̇(𝑡), and 

𝒜 = [
0 1

−𝜔2 0
] 

 

The matrix 𝒜 has eigenvalues ±𝑖𝜔 and corresponding engenvectors [1, ±𝑖𝜔]𝑇 , 𝑖2 = −1. 
Therefore, the general solution to Eq. XX.9 is 

[
𝑥
𝑦] = 𝑐1𝑒𝑖𝜔𝑡 [

1
𝑖𝜔

] + 𝑐2𝑒−𝑖𝜔𝑡 [
1

−𝑖𝜔
] (XX.10) 

Thus, using Proposition XX.2 yields the real solution 

𝑥(𝑡) = 𝑐1𝑒𝑖𝜔𝑡 + 𝑐2𝑒−𝑖𝜔𝑡 = 𝐴cos(𝜔𝑡 + 𝜑) (XX.11) 

Using the initial conditions 𝑥(0) = 𝑥0 and 𝑥̇(0) = 0, we obtain the solution to Eq. XX.7: 

𝑥(𝑡) = 𝑥0cos(𝜔𝑡) (XX.12) 

 



Here we notice that the positive imaginary part of the eigenvalues of the matrix 𝒜 is the 
angular frequency. 

 

XX.3   Damped oscillation 

      Taking friction into account, we need to include a drag force which is anti-proportional 
to the velocity of the ball in Eq. XX.7.  In this case, the energy of the oscillator leaks to its 
environment in the form of heat.  This effect is called energy dissipation.  Because of energy 
dissipation, the free oscillation will decay with time, which is called damped oscillation.   A 
damped oscillation system can be described as 

𝑚
𝑑2𝑥

𝑑𝑡2
= −𝑘𝑥 − 𝑏

𝑑𝑥

𝑑𝑡
 (XX.13) 

where the constant 𝑏 is called the drag coefficient.  

      Let 𝜔0 = √
𝑘

𝑚
 and 𝛾 =

𝑏

2𝑚
.  Then Eq. XX.13 becomes 

𝑑2𝑥

𝑑𝑡2
+ 𝜔0

2𝑥 + 2𝛾
𝑑𝑥

𝑑𝑡
= 0 (XX.14) 

Substituting 𝑧 = 𝐴𝑒𝑖(𝑝𝑡+𝛼) into the equation Eq. XX.14, we obtain 

−𝑝2 + 𝜔0
2 + 𝑖2𝑝𝛾 = 0 (XX.15) 

If 𝑝 is a real number, 𝑝 = 0 and 𝜔0 = 0, which is not true by the definition of 𝜔0. So 𝑝 must 
be an imaginary number. Suppose 𝑝 = 𝜔′ + 𝑖𝑠.   

      First, we consider the case of 𝛾 < 𝜔0, which is called under-damping.  From Eq. XX.15, 
we obtain 

{

𝑠 = 𝛾

𝜔′ = √𝜔0
2 − 𝛾2 

and 

𝑧 = 𝐴𝑒𝑖(𝑝𝑡+𝛼) = 𝐴𝑒𝑖(𝜔′𝑡+𝑖𝑠𝑡+𝛼) = 𝐴𝑒−𝑠𝑡𝑒𝑖(𝜔′𝑡+𝛼) (XX.16) 

Thus Eq. XX.13 has a real solution 



𝑥(𝑡) = 𝐴𝑒−𝛾𝑡cos(𝜔′𝑡 + 𝛼) (XX.17) 

where 𝐴 and 𝛼 are determined by initial and boundary conditions. 

      In order to make the connection between eigenvalues and frequencies, we rewrite Eq. 
XX.14 in a matrix form: 

𝑑

𝑑𝑡
[
𝑥
𝑦] = 𝒜𝑑 [

𝑥
𝑦] (XX.18) 

where 𝑦(𝑡) = 𝑥̇(𝑡), and 

𝒜𝑑 = [
0 1

−𝜔0
2 −𝛾

] 

The matrix 𝒜𝑑  has eigenvalues −𝛾 ± 𝑖𝜔′ and corresponding eigenvectors [1, −𝛾 ± 𝑖𝜔′]𝑇. 
Therefore, the general solution to Eq. XX.18 is 

[
𝑥
𝑦] = 𝑒−𝛾/2{𝑐1𝑒𝑖𝜔′𝑡 [

1
𝑖𝜔′

] + 𝑐2𝑒−𝑖𝜔′𝑡 [
1

−𝑖𝜔′
]} (XX.19) 

Thus, from Proposition XX.2, the real solution is 

𝑥(𝑡) = 𝐴𝑒−𝛾𝑡cos(𝜔′𝑡 + 𝛼) (XX.20) 

Using the initial conditions 𝑥(0) = 𝑥0 and 𝑥̇(0) = 0, we obtain the solution 

𝑥(𝑡) = 𝑥0𝑒−𝛾𝑡cos(𝜔′𝑡) (XX.21) 

Here we notice that the positive imaginary part of the eigenvalues of the matrix 𝒜𝑑  is the 
angular frequency. 

 

Overdamping 

When 𝛾 > 𝜔0, it is called overdamping.  In this case,  

𝜔′ = ±(𝛾2 − 𝜔0
2)1/2 (XX.22) 

The general solution for overdamping is 

𝑥(𝑡) = 𝑒−𝛾𝑡 (𝑐1𝑒(𝛾2−𝜔0
2)

1/2
𝑡 + 𝑐2𝑒−(𝛾2−𝜔0

2)
1/2

𝑡) (XX.23) 



Critical damping 

When 𝜔0 = 𝛾, it is called critical damping.  In this case, the general solution is 

𝑥 = (𝐴 + 𝐵𝑡)𝑒−𝛾𝑡 (XX.24) 

 

XX.4   Forced oscillation 

      If the oscillation is driven by an external force 𝐹0cos(𝜔𝐷𝑡),  Eq. XX.13 needs to include 
the external force effect:  

𝑚
𝑑2𝑥

𝑑𝑡2
= −𝑘𝑥 − 𝑏

𝑑𝑥

𝑑𝑡
+ 𝐹0cos(𝜔𝐷𝑡) (XX.25) 

Consider Eq. XX.25 as the real part of 𝑧 satisfying 

𝑑2𝑧

𝑑𝑡2
+ 𝜔0

2𝑧 + 2𝛾
𝑑𝑧

𝑑𝑡
=

𝐹0

𝑚
𝑒𝑗𝜔𝐷𝑡 (XX.26) 

We have derived the general solution Eq. XX.20 to the homogeneous equation of Eq. XX.26. 
Now we need find a particular solution to the inhomogeneous equation Eq. XX.26. Because 
𝜔𝐷 will be the dominant frequency after a long time, we assume a steady state solution has 
the form of 𝑧 = 𝐴𝑒𝑗(𝜔𝐷𝑡−𝛿). Substituting 𝑧 = 𝐴𝑒𝑗(𝜔𝐷𝑡−𝛿) into Eq. XX.26, we obtain 

−𝜔𝐷
2 𝑧 + 𝜔0

2𝑧 + 2𝛾𝜔𝐷𝑗𝑧 =
𝐹0

𝑚
𝑒𝑗𝜔𝐷𝑡 (XX.27) 

Cancelling  𝑒𝑗(𝜔𝐷𝑡−𝛿) in both side yields 

𝐴(−𝜔𝐷
2 + 𝜔0

2 + 2𝛾𝜔𝐷𝑗) =
𝐹0

𝑚
cos(𝛿) + 𝑗

𝐹0

𝑚
sin(𝛿) 

or 

{
𝐴(−𝜔𝐷

2 + 𝜔0
2) =

𝐹0

𝑚
cos(𝛿)

2𝐴𝛾𝜔𝐷 =
𝐹0

𝑚
sin(𝛿)

 

Using 𝑠𝑖𝑛2(𝛿) + 𝑐𝑜𝑠2(𝛿) = 1, we obtain 

 

 



𝐴 =
𝐹0

𝑚
[(𝜔0

2 − 𝜔𝐷
2 )2 +

𝑏2𝜔𝐷
2

𝑚2
]

−1/2

 

tan𝛿 =
2𝛾𝜔𝐷

𝜔0
2 − 𝜔𝐷

2  

Equation Eq. XX.26 has a real solution 

𝑥 = 𝐴cos(𝜔𝐷𝑡 − 𝛿) (XX.28) 

The solution does not depend on any initial conditions. At 𝜔𝑚𝑎𝑥 = (𝜔0
2 − 2𝛾2)1/2, 𝐴𝑚𝑎𝑥 =

𝐹0

2𝑘

𝑄

(1−
1

𝑄2)1/2
 , where 𝑄 =

𝜔0

𝛾
 is called the quality factor.  

The general solution of the driven system Eq. XX.25 is the sum of Eq. XX.28 and Eq. XX.20: 

𝑥 = 𝐴cos(𝜔𝐷𝑡 − 𝛿) + 𝑋𝑒−𝛾𝑡cos(𝜔′𝑡 + 𝛼) (XX.29) 

The first term is the steady state solution, the second term is the transient solution which 
will eventually decay.  

      Consider the work done to the system by the external force: 

𝑑𝑊 = 𝐹⃗ ⋅ 𝑑𝑥⃗⃗⃗⃗⃗ (XX.30) 

and the power 

𝑃 =
𝑑𝑊

𝑑𝑡
= 𝐹⃗ ⋅

𝑑𝑥⃗⃗⃗⃗⃗

𝑑𝑡
 (XX.31) 

Applying to the steady state Eq. XX.28 of the driven system since the transition state will 
die out, we obtain 

𝑃 = 𝐹𝑣 = 𝐹0cos(𝜔𝐷𝑡)[−𝜔𝐷𝐴sin(𝜔𝐷𝑡 − 𝛿)] (XX.32) 

The average 𝑃 in a cycle is  



𝑃‾ =
1

𝑇
∫ 𝑃

𝑇

0

(𝑡)𝑑𝑡

= −𝜔𝐷𝐴𝐹0

1

𝑇
∫ cos

𝑇

0

(𝜔𝐷𝑡)[sin(𝜔𝐷𝑡)cos𝛿 − cos(𝜔𝐷𝑡)sin𝛿)]𝑑𝑡

=
𝐹0

2
𝜔𝐷𝐴 sin𝛿

=
𝐹0

2
𝐴

2𝜔𝐷
2𝛾

√(𝜔0
2 − 𝜔𝐷

2)2 + (2𝜔𝐷𝛾)2

=
𝐹0

2𝛾

𝑚
[(

𝜔0
2

𝜔𝐷
− 𝜔𝐷)

2

+ 4𝛾2]

−1

 (XX.33) 

It is easy to see that  

1) If  𝛾 → ∞,  𝑃‾ → 0.  It means that if the friction is very large, the external force does 
no useful work.  

2) If 𝑚 → ∞, 𝑃‾ → 0. It means that if the mass is very large, the external force does no 
useful work.  

3) If 𝐹0 → 0, 𝑃‾ → 0. It means that no force. 
4) If 𝜔𝐷 → ∞, 𝑃‾ → 0. It means that the driving force oscillates too fast to do useful 

work. 
5) If 𝜔 → 0, 𝑃‾ → 0. It means that the driving force oscillates too slow to do useful work.  

6) If 𝜔 → 𝜔0, 𝑃‾ → 𝑃‾𝑚𝑎𝑥 =
𝐹0

2

4𝑚𝛾
. It means the driving force does maximum useful work to 

the system. This is called the resonance phenomena.  

 

 

XX.5   Electron oscillation 

      Consider an atom in an oscillating electric field 𝐸 = 𝐸(𝑡) along the z-direction. We 
assume a particular electron of this atom is oscillating around  𝑧 = 0. The motion of the 
electron can be described as  

𝑧̈ + 2𝜂𝑧̇ + 𝛺0
2𝑧 = 𝑎(𝑡)   where   𝑎(𝑡) = −

𝑒

𝑚
𝐸(𝑡) (XX.34) 

where 𝑚 and −𝑒 are the electron’s mass and charge, 𝑚𝛺0
2 is the spring constant of the 

linear oscillator, 2𝑚𝜂 the friction coefficient.  

 



XX.5.1 Green’s function  

We assume there is a linear relationship between position 𝑧 and acceleration 𝑎:  

𝑧(𝑡) = ∫ 𝑑𝑠𝛤(𝑡, 𝑠)𝑎(𝑠) (XX.35) 

where  𝛤 is a Green’s function. 

Because the coefficients of Eq. XX.34 do not depend on time 𝑡, we have 𝛤(𝑡, 𝑠) = 𝛤(𝑡 − 𝑠), 
and thus 

𝑧(𝑡) = ∫ 𝑑𝑠𝛤(𝑡 − 𝑠)𝑎(𝑠) = ∫ 𝑑𝜏𝛤(𝜏)𝑎(𝑡 − 𝜏) (XX.36) 

The displacement 𝑧 is caused by the acceleration 𝑎. Causes must be earlier that their effect. 
Therefore  

𝑧(𝑡) = ∫ 𝛤
𝑡

−∞

(𝑡 − 𝑠)𝑎(𝑠)𝑑𝑠 = ∫ 𝛤
∞

0

(𝜏)𝑎(𝑡 − 𝜏)𝑑𝜏 (XX.37) 

Taking derivative with respect to time 𝑡 in Eq. XX.37, we obtain: 

𝑧̇(𝑡) = 𝛤(0)𝑎(𝑡) + ∫ 𝑑
𝑡

−∞

𝑠𝛤̇(𝑡 − 𝑠)𝑎(𝑠) (XX.38) 

We differentiate Eq. XX.38 with respect to time 𝑡: 

𝑧̈(𝑡) = 𝛤(0)𝑎̇(𝑡) + 𝛤̇(0)𝑎(𝑡) + ∫ 𝑑
𝑡

−∞

𝑠𝛤̈(𝑡 − 𝑠)𝑎(𝑠) (XX.39) 

Inserting Eq. XX.38 and Eq. XX.39 into Eq. XX.34 yields 

𝛤̈ + 2𝜂𝛤̇ + 𝛺0
2𝛤 = 0 (XX.40) 

and 

𝛤(0) = 0   and   𝛤̇(0) = 1 (XX.41) 

From Section XX.3, we know if 𝜂/𝛺0 < 1, Eq. XX.40 has a general solution:  



𝛤(𝜏) = 𝑐1𝑒(−𝜂+𝑖𝛺)𝑡 + 𝑐2𝑒(−𝜂−𝑖𝛺)𝑡, 𝛺 = √𝛺0
2 − 𝜂2 (XX.42) 

Using initial conditions Eq. XX.41, we obtain 

𝛤(𝜏) =
1

𝛺
𝑒−𝜂𝜏sin𝛺𝜏 (XX.43) 

Substituting Eq. XX.43 into Eq. XX.37 results in the solution  

𝑧(𝑡) =
−𝑒

𝑚
∫ 𝛤

∞

0

(𝜏)𝐸(𝑡 − 𝜏)𝑑𝜏 =
−𝑒

𝑚𝛺
∫ 𝑑

∞

0

𝜏𝐸(𝑡 − 𝜏)𝑒−𝜂𝜏sin𝛺𝜏 (XX.44) 

 

XX.5.2 Susceptibility  

The dipole moment of the above considered electron is 𝑝 = −𝑒𝑧. If there are 𝑁 of them per 

unit volume, the polarization is 𝑃(𝑡) = 𝑁𝑝。 Using Eq. XX.44,  we obtain: 

𝑃(𝑡) = 𝑁𝑝 = −𝑒𝑁𝑧(𝑡) =
𝑁𝑒2

𝑚
∫ 𝑑

∞

0

𝜏𝛤(𝜏)𝐸(𝑡 − 𝜏)

= ∫ 𝑑
∞

−∞

𝜏[
𝑁𝑒2

𝑚
𝐻(𝜏)𝛤(𝜏)]𝐸(𝑡 − 𝜏)

 (XX.45) 

where  𝐻(𝜏) is the Heaviside step function.  

Fourier transforming Eq. XX45 results in  

𝑃̂(𝜔) = 𝜖0𝜒(𝜔)𝐸̂(𝜔) (XX.46) 

where 

𝐸̂(𝜔) = ∫ 𝑑𝜔 𝑒𝑖𝜔𝑡𝐸(𝑡) (XX.47) 

and  



𝜒(𝜔) =
𝑁𝑒2

𝑚𝜖0
∫ 𝑑

∞

0

𝜏𝑒𝑖𝜔𝜏 𝛤(𝜏)

=
𝑁𝑒2

𝑚𝜖0
∫ 𝑑

∞

0

𝜏𝑒𝑖𝜔𝜏
1

2𝑖𝛺
𝑒−𝜂𝜏(𝑒𝑖𝛺𝜏 − 𝑒−𝑖𝛺𝜏)

=
𝑁𝑒2

𝑚𝜖0

1

(𝛺 + 𝜔 + 𝑖𝜂)(𝛺 − 𝜔 − 𝑖𝜂)

=
𝑁𝑒2

𝑚𝜖0

1

𝛺0
2 − 𝜔2 − 2𝑖𝜂𝜔

=
𝑁𝑒2

𝑚𝜖0

𝛺0
2 − 𝜔2 + 2𝑖𝜂𝜔

(𝛺0
2 − 𝜔2)2 + 4𝜂2𝜔2

 (XX.48) 

𝜒 = 𝜒(𝜔) is called the susceptibility of the material under study. It is a function of angular 
frequency. Its imaginary part   

𝐼𝑚 𝜒(𝜔) =
𝑁𝑒2

𝑚𝜖0

2𝜂𝜔

(𝛺0
2 − 𝜔2)2 + 4𝜂2𝜔2

 (XX.49) 

has the following properties: Eq. 15 或 Eq. 16 有下面的基本特征： 

• 𝐼𝑚 𝜒(𝜔) → 0, as 𝜔 → ∞. 

• 𝐼𝑚 𝜒(𝜔) > 0 

• Resonance frequency  𝜔 ≈ 𝛺0. 

 

 


