Martingales

Probability space

Definition 1. A probability space is defined by three elements Ω , \mathcal{F} , and \mathcal{P} . Ω is the sample space, i.e. all possible outcomes. \mathcal{F} is the event space, i.e. a σ -algebra of subsets of Ω . A σ -algebra is a non-empty set satisfying:

- 1) $\Omega \in \mathcal{F};$
- 2) If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$;
- 3) If $A_n \in \mathcal{F}$, $n = 1, 2, \dots$, then $\bigcup_n A_n \in \mathcal{F}$.

 $\mathcal{P}: \mathcal{F} \to [0,1]$ is the probability function satisfying:

- i) $P(\Omega) = 1$ (normed);
- ii) If $A_n \in \mathcal{F}$ $(n = 1, 2, \dots)$ is a countable collection of pairwise disjoint sets, then $\mathcal{P}(\bigcup_n A_n) = \sum_n \mathcal{P}(A_n) (\sigma$ -additive).

Note 1. A set $A \in \mathcal{F}$ is called an event or \mathcal{F} -measurable.

Note 2. The Borel σ -algebra \mathcal{B} is defined as the smallest σ -algebra in \mathbb{R} that includes all intervals of real numbers. A set $B \in \mathcal{B}$ is called a Borel set.

Filtrations

Definition 2. Let I = [0, T] with T > 0, and $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space. A family $\{\mathcal{F}_t\}_{t \in I}$ of sub- σ -algebras of \mathcal{F} is called a filtration associated with the probability space, if $\mathcal{F}_s \subset \mathcal{F}_t$, whenever $s \leq t$.

Example 1. Throw a fair coin three times.

 $\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$. A filtration can be constructed as follows.

- 1) In the time when no toss is performed, $\mathcal{F}_0 = \{\emptyset, \Omega\}$;
- 2) In the time when the first toss is done: $A_H = \{HHH, HHT, HTH, HTT\}$ and $A_T = \{THH, THT, TTH, TTT\}, \mathcal{F}_1 = \{\emptyset, \Omega, A_H, A_T\}.$

- 3) In the time when the first two tosses are done: $A_{HH} = \{HHH, HHT\}, A_{HT} = \{HTH, HTT\}, A_{TH} = \{THH, THT\}, and A_{TT} = \{TTH, TTT\}, \mathcal{F}_2 = \{\emptyset, \Omega, A_H, A_T, A_{HH}, A_{HT}, A_{TH}, A_{TT}, A_{HH}^c, A_{TT}^c, A_{TT}^c, A_{HH}^c \cup A_{HT}, \cdots \}.$
- 4) In the time when all three tosses are done, $\mathcal{F}_3 = \mathcal{F}$.

Basically we do not want to use the total information \mathcal{F} . But we wish to use filtered shorter information \mathcal{F}_t from the past to the present time *t*.

For a stochastic process X(t), we often choose the natural filtration $\mathcal{F}_t = \sigma(X_s; 0 \le s \le t)$ of the σ -algebras generated by the stochastic process up to (and including) time t, which contains the past and present 'information' of the process.

Definition 3. A stochastic process $\{X_t\}_{t \in I}$ is adapted to a filtration $\{\mathcal{F}_t\}_{t \in I}$ or is \mathcal{F}_t -adapted if, for each $t \in I$, X_t is \mathcal{F}_t -measurable.

Note 3. A stochastic process $\{X_t\}_{t \in I}$ is always adapted to its natural filtration, which is the smallest filtration to which it is adapted.

Martingales

Definition 4. Given a stochastic process $\{X_t\}_{t \in I}$ on the probability space $(\Omega, \mathcal{F}, \mathcal{P})$ and a filtration $\{\mathcal{F}_t\}_{t \in I}$ in that space, we say that the stochastic process is an \mathcal{F}_t -martingale if,

- 1) It is adapted to the filtration $\{\mathcal{F}_t\}_{t \in I}$;
- 2) $X_t \in L^1$ (i.e. $E[|X_t|] < +\infty$), for $\forall t \in I$;
- 3) $E[X_t | \mathcal{F}_s] = X_s$ for any $s \le t$.

Note 4. A stochastic process $(Y_t)_{t\geq 0}$ is a martingale with its natural filtration, if for all $t \geq 0$,

- 1) $E(Y_t|Y_r, 0 \le r \le s) = Y_s$, for all $0 \le s \le t$.
- 2) $E(|Y_t|) < \infty$.

Note 5. A most important property of martingales is that they have constant expectation, since

$$E[X_n] = \int_{\Omega} X_n \, dp = \int_{\Omega} E(X_{n+1}|\mathcal{F}_n) dp = \int_{\Omega} X_{n+1} \, dp = E[X_{n+1}]$$

Example 2. The simple symmetric random walk is a martingale.

Solution Let

$$X_i = \begin{cases} +1, & \text{with probability} 1/2, \\ -1, & \text{with probability} 1/2, \end{cases} \quad i = 1, 2, \cdots.$$

For $n \ge 1$, let $S_n = X_1 + X_2 + \dots + X_n$, with $S_0 = 0$.

Since X_{n+1} is independent of S_0, \dots, S_n , $E(X_{n+1}|S_0, \dots, S_n) = E(X_{n+1})$. Since E(g(X)|X) = g(X), $E(S_n|S_0, \dots, S_n) = S_n$. Therefore,

$$E(S_{n+1}|S_0, \dots, S_n) = E(X_{n+1} + S_n|S_0, \dots, S_n)$$

= $E(X_{n+1}|S_0, \dots, S_n) + E(S_n|S_0, \dots, S_n)$
= $E(X_{n+1}) + S_n = S_n.$

The second part of the martingale definition is satisfied as

$$E(|S_n|) = E\left(|\sum_{i=1}^n X_i|\right) \le E\left(\sum_{i=1}^n |X_i|\right) = \sum_{i=1}^n E(|X_i|) = n < \infty.$$