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Peptide binding to a graphene sheet is studied by a coarse-grained approach. All-atom molecular

dynamics (MD) is used to assess the adsorption energy (e.g. binding) of each amino acid with graphene.

The relative adsorption energy of each residue is normalized to describe its coarse-grained interactions

with graphene which is used as an input to a phenomenological interaction in an all-residue coarse-

grained (ARCG) representation of the peptide chain. Large scale Monte Carlo (MC) simulations are

performed to study the stability of peptides (P1: 1H–2S–3S–4Y–5W–6Y–7A–8F–9N–10N–11K–12T and

P2: 1E–2P–3L–4Q–5L–6K–7M) binding to a graphene sheet as a function of temperature. A number of

local and global physical quantities are analyzed including mobility and substrate-in-contact profiles of

each residue, density profiles, root mean square displacement of the center of mass of each peptide and

its radius of gyration. We find that P1 has a higher probability of binding to a graphene sheet than P2

supported by both local and global physical quantities. All residues of P1 can bind to the graphene

sheet at low temperatures; however, three residues 4Y–5W–6Y seem to anchor it most strongly at higher

temperatures, which is consistent with an all-atom MD simulation.
1. Introduction

Fabrication of multifunctional materials with optimal character-

istics via directed assembly of biofunctionalized nanoparticles has

become a subject of immense interest in recent years1–6 due in part

to advances inmanipulating structures at nano scales. Peptides are

some of themost versatile functionalizing agents with their prolific

conformational response and selective binding characteristics.

Therefore, identifying peptides that can selectively bind to desir-

able nano-particles7–10 (e.g., gold, palladium, clay platelets, etc.),

including graphitic surfaces,11 has become one of themajor thrusts

in designing materials with desirable characteristics; the list of

references is too long to cite all here.Kim et al.6have recently found

that peptides P1: 1H–2S–3S–4Y–5W–6Y–7A–8F–9N–10N–11K–12T

and P2: 1E–2P–3L–4Q–5L–6K–7M bind selectively to graphene

surfaces and edges, which is critical in modulating both the

mechanical as well as electronic transport properties of graphene.

They have argued that the noncovalent selective bindingof peptide

to a planar surface or edge of graphene is due to p–p stacking or

electrostatic interaction. Such a distinction at the atomic scale was

feasible by computer simulationonly using anall-atomicmodel.6,11

Wewould like to extend the computer simulation study further on
aDepartment of Physics and Astronomy, University of Southern
Mississippi, Hattiesburg, MS 39406-0001, USA. E-mail: ras.pandey@
usm.edu
bMaterials and Manufacturing Directorate, Air Force Research
Laboratory, Wright Patterson Air Force BaseOH 45433, USA

† Electronic supplementary information (ESI) available. See DOI:
10.1039/c2sm25870f

This journal is ª The Royal Society of Chemistry 2012
a large scale using a coarse-grainedMonte Carlo (MC) simulation

with an input from the all-atommoleculardynamics (MD) studyat

small scales. Our primary goal is to assess the relative binding of

peptides P1 and P2, identify the underlying residues that anchor

thebinding, andevaluate its stabilitywith respect to temperature at

equilibrium.

Peptides are assembled from a set of amino acids tethered

together in a chain via peptide (covalent) bonds. Twenty amino

acids (AAs) constitute the basic building blocks of peptides,

which range from a molar mass of 75 DA (10 atoms) to 204 DA

(27 atoms) with key elements carbon, hydrogen, oxygen, and

nitrogen. Each amino acid is characterized by its unique side

chain along with an amine and carboxylic acid groups. The

degrees of freedom (torsional, covalent elastic bonds, trans-

lational) associated with atoms in each amino acid and its

assembly in a peptide chain spans a vast conformational phase

space. Scanning such a huge set of conformations that charac-

terize specific equilibrium structures requires time steps generally

not accessible in all-atom computational modeling12 particularly

in monitoring the large scale structural changes and relaxation of

large peptides in appropriate environments. Self and directed

assembly of peptides, peptide binding to substrates including bio-

functionalization of nano particles, and protein folding in a

range of solvent environments may involve multiscale relaxa-

tions. Large scale (spatial and temporal) investigation of such

complex systems is generally not amenable to computational

approaches with atomic resolution. Therefore, some degree of

approximation with a lower resolution description is necessary in

almost all computer simulation modeling.
Soft Matter, 2012, 8, 9101–9109 | 9101
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Reducing the degrees of freedom while preserving the perti-

nent features of peptides on a large scale is one of the primary

objectives in coarse-graining mechanisms. Enormous efforts13–31

have been directed towards developing coarse-grained models

using both Monte Carlo and molecular dynamics methods.

Designing appropriate force fields has been one of the major

efforts in MD studies.19–31 Because of the ingenuity of such

approaches in preserving the pertinent features, remarkable

success is achieved in addressing a number of issues in bio-

macromolecular assembly. It involves a variety of mechanisms

such as setting parameters for an effective residue–residue

interaction to achieve conformational relaxation into the native

configuration of a protein via a reduced model,15 representing

several atomic units of a residue by an effective potential with

specific constraints in united residue descriptions,19 force

matching to minimize the difference between atomic and pre-

dicted effective forces,21–23 and so on. For example, using a

coarse-grained molecular dynamics simulation, Sorensen et al.29

have examined the assembly of amylin peptides and shown that

the ‘‘protofibrils are not formed independently in solution but are

subunits of the larger growing fibril.’’ They have pointed out the

limitations underlying the coarse-grained approaches, namely

the time scale is too large to cover the entire relaxation and

assembly processes even using the CG models despite the struc-

tural constraints and approximate force field.

Computing limitations (both temporal and spatial) are

extensively discussed32 in polymers particularly in complex

polymer systems.33,34 It is not feasible to cover complete polymer

chain dynamics (e.g., Rouse, reptation, post-reptation, diffusion

from short to long time dynamics of chains in an idealized dense

melt). One can hardly approach reptation from short time Rouse

dynamics.35 Thus, reaching the long time diffusion from short

time relaxation is out of the question by off-lattice MD simula-

tions even with the coarse-grained (bead–spring) model. Such a

long relaxation time for polymer chains in the melt is not

accessible by MD simulations due to excessively large degrees of

freedom in the continuum (off-lattice) space. The bond-fluctua-

tion description of the polymer chain32,36 on a discrete lattice with

reduced but ample degrees of freedom has become a method of

choice for such large scale simulations to study complex

macromolecular systems.33,34 We have already adopted such

methods in studying the global properties of proteins17,18 and

peptide binding to specific substrates.7–9,37,38 In this article, we

would like to develop it further with input from an all-atom MD

simulation. A peptide can be represented by a chain of coarse-

grained nodes where each node represents an amino acid. In

addition to ignoring the structural details of amino acids, one of

the main issues remaining is how to capture the specificity of the

amino acid in its representative node, particularly its interaction

with the underlying matrix (graphene). Obviously it depends on

the issues to be addressed, for example, the binding of peptides

P1 and P2 to a graphene sheet examined here.

The computer simulation is carried out in two steps (bottom-

up): (i) consider the binding of each amino acid (a free residue)

with the graphene sheet analogous to a recent study by Feng

et al.39 on a gold substrate. This will entail performing large-scale

simulations with all-atom details of each amino acid and evalu-

ating its binding energy with graphene. This step captures the

atomic scale details of the amino acid by the ensemble averaging
9102 | Soft Matter, 2012, 8, 9101–9109
of its equilibrium structures; the binding energy of an amino acid

in equilibrium constitutes its interaction strength with the

substrate. (ii) The binding energy of each amino acid is then used

as an input to an interaction potential between the coarse-

grained peptide node (residue) and the graphene sheet. Simula-

tions with the coarse-grained peptide chain are then carried out

for a sufficiently long time to find the relative binding of the

peptides and identify the residues that are most likely to anchor

them. To assure that the results obtained for the binding of

peptides from the coarse-grained approach are reliable, we

carried out simulation for a simplified system first, such as a

peptide chain in a simulation box with a graphene sheet by the

all-atom approach and see if the same results are recovered by the

coarse-grained model. In the following we describe the all-atom

procedure and how its results are used in our coarse-grained

approach. Large scale results are presented in the subsequent

section followed by a summary and conclusion.
2. All-atom approach

Using an all-atom representation of the amino acids, molecular

dynamics (MD) simulations were performed to estimate the

relative binding of all twenty amino acids to a graphene sheet.

The relative binding affinity is quantified by the adsorption

energy. Here we define the adsorption energy as the minimum

interaction energy between an amino acid and a model graphene

sheet after the system is equilibrated. Since a neutral rigid gra-

phene sheet was used in our calculations, the interaction energy

only accounts for the van der Waals potential energy between an

amino acid and the model graphene sheet.

The reliability of the adsorption energy calculations depends

on force fields as demonstrated by Collier et al.40 Since the

commonly used force fields are developed in aqueous solution,

their transferability to interfacial interaction is questionable.41,42

However, two recent molecular dynamics simulations6,43 have

shown that Amber force field ff99SB can be used to reproduce

the secondary structures of peptides comparable to experimental

measurements when the peptides are adsorbed on a graphene

sheet. The predicted peptide secondary structures correspond to

the minimum interaction energy (adsorption energy). Therefore

we employed Amber force field ff99SB to calculate the adsorp-

tion energy of the 20 amino acids on a graphene sheet as an input

to large scale coarse-grained Monte Carlo simulations.

The model graphene sheet is of the size 5 nm � 5 nm. The

surface carbons of the graphene sheet are modeled as sp2 hybrids

while the unsaturated carbon atoms on the edges are terminated

with hydrogen atoms. The center of mass of the backbone atoms

of an amino acid is initially located at 1 nm above the graphene

ribbon center using an in-house developed code (Fig. 1). To

avoid forming a possible salt bridge between the termini, each

residue is capped using acetyl (ACE) and amine (NME) groups.

When it is necessary, Na+ or Cl� ions are added to neutralize the

system. For each amino acid, ten independent simulations were

performed using different initial atomic velocities in vacuum

phase using NAMD software.44 Each simulation equilibrated for

40 ns. The adsorption energy for each amino acid was obtained

using the last 1000 snapshots taken every 10 ps along each of the

ten trajectories. The obtained adsorption energy in vacuum

phase is listed in the third column in Table 1 and shown in Fig. 2.
This journal is ª The Royal Society of Chemistry 2012
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Fig. 1 The initial configuration of an amino acid above a graphene

ribbon.
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Since only van der Waals interaction is included in the calcu-

lated adsorption energy, all the calculated adsorption energies

are negative. The calculated adsorption energies show that the

first six strong binders are TRP (�23.4 kcal mol�1), TYR (�20.3

kcal mol�1), ARG (�19.3 kcal mol�1), PHE (�18.1 kcal mol�1),

HIS (�17.0 kcal mol�1), and LYS (�15.5 kcal mol�1). The

predicted binding order TRP > TYR > PHE > HIS is consistent

with the prediction of the density functional theory for the

relative binding of these amino acids to graphene with binding

energies of 9.7 kcal mol�1 (tryptophan), 7.1 kcal mol�1 (tyro-

sine), 5.8 kcal mol�1 (phenylalanine), and 4.8 kcal mol�1 (histi-

dine).45 The relative binding affinity has also been verified by

experiments.46 Therefore it is reasonable to use these data further

in coarse-grained Monte Carlo simulations.

To test the water effect, the equilibrated systems with

minimum interaction energy were solvated in water. Water

molecules surround the system extending 1.2 nm away from the

solute in all three dimensions. After minimization and gradually

heating the system up to 300 K, 40 ns equilibration was per-

formed in an NVT ensemble using 3-D periodic boundary

conditions. The particle-mesh Ewald (PME) method was used

for the long-range electrostatic interaction calculations. A
Table 1 Amino acids with their hydropathy index (hydrophobic (H),
polar (P), and electrostatic (E) groups), adsorption energy (DE) and its
normalized values

Amino acid H/P/E

DE (MD) (kcal mol�1)

NormalizedVacuum Water Difference

Ile (I): H1 4.5 �14.1 �13.3 0.8 �0.567
Val (V): H2 4.2 �12.2 �11.7 0.5 �0.519
Leu (L): H3 3.8 �14.2 �13.5 0.7 �0.599
Phe (F): H4 2.8 �18.1 �18.4 0.3 �0.701
Cys (C): H5 2.5 �11.5 �11.2 0.3 �0.487
Met (M): H6 1.9 �15.2 �15.4 0.2 �0.626
Ala (A): H7 1.8 �9.3 �9.0 0.3 �0.380
Gly (G): H8 �0.4 �7.8 �7.7 0.1 �0.348
Thr (T): P1 �0.7 �12.0 �12.0 0.0 �0.497
Ser (S): P2 �0.8 �10.7 �10.4 0.3 �0.412
Trp (W): P3 �0.9 �23.4 �23.6 0.2 �1.000
Tyr (Y): P4 �1.3 �20.3 �18.9 1.4 �0.856
Pro (P): P5 �1.6 �12.0 �11.5 0.5 �0.460
His (H): P6 �3.2 �17.0 �15.9 1.1 �0.759
Gln (Q): P7 �3.5 �15.3 �16.1 0.8 �0.658
Asn (N): P8 �3.5 �13.2 �13.6 0.4 �0.588
Asp (D): E1 �3.5 �12.2 �11.2 1.0 �0.497
Glu (E): E2 �3.5 �13.4 �15.1 1.7 �0.561
Lys (K): E3 �3.9 �15.5 �16.5 1.0 �0.572
Arg (R): E4 �4.5 �19.3 �20.1 0.8 �0.690

This journal is ª The Royal Society of Chemistry 2012
smooth switching function was used to truncate the van der

Waals potential energy smoothly at the cutoff distance of 1.2 nm

and switch distance of 1.0 nm. As in the vacuum phase, the

adsorption energy was calculated using the last 1000 snapshots

taken every 10 ps along each of the ten trajectories. The calcu-

lated adsorption energy in the water phase is listed in the fourth

column in Table 1. The difference of all the calculated adsorption

energies between those in-vacuum and in-water is less than 1.5

kcal mol�1. This implies that the van der Waals interaction is the

dominant force for the adsorption. The last column of the table is

the relative adsorption energy normalized by the largest value in

the table.

It is worth exploring the binding of peptides P1 and P2 by all-

atomMD simulation first. The structures of P1 and P2 predicted

by Kim et al.6 were used as initial structures in this study. Each

peptide (P1 and P2) was manually placed at five different starting

positions relative to the rigid 5 � 5 nm graphene sheet: one close

to the zigzag edge, one close to the arm chair edge, one close to

the surface, and one at a distance away from the surface. Each

simulation system consists of a peptide, a graphene sheet and

necessary neutralization ions. Fig. 3 shows the five starting

positions of P2 in five different simulation settings as an example.

For each system, we performed 2 independent MD simulations

using different initial velocities. Each simulation was done for

100 ns. 1000 trajectory snapshots taken every 10 ps in the last 10

ns were used to calculate the interaction energy between an

individual residue and the graphene sheet. The calculated

adsorption energies are shown in Fig. 4. The strong binding
Fig. 2 Adsorption energy of each amino acid:
1I–2V–3L–4F–5C–6M–7A–8G–9T–10S–11W–12Y–13P–14H–15Q–16N–17D–
18E–19K–20R from all-atom MD simulation (Table 1).

Fig. 3 Overlap view of initial configurations of P2 peptide in five

simulations.

Soft Matter, 2012, 8, 9101–9109 | 9103
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Fig. 4 The interaction energies (kcal mol�1) of individual residues with the graphene sheet (binding energy) of peptides P1

(1H–2S–3S–4Y–5W–6Y–7A–8F–9N–10N–11K–12T) and P2 (1E–2P–3L–4Q–5L–6K–7M).
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residues are 4Y–5W–6Y/8F for P1 as clearly seen in Fig. 4. This

is in agreement with the results from Kim et al.6 in explicit water

simulation and Rajesh et al.45 in density functional theory

calculation. This is not surprising because pi–pi interaction can

be resolved in vacuum phase. For P2, there is no strong binding

motif to the surface. This is again in agreement with Kim et al.’s

observation that P2 prefers to bind to the edge due to electro-

static interaction.6
3. All-residue coarse-grained approach

As mentioned above, a peptide is described by a set of nodes

tethered together via peptide (covalent) bonds, where a node

represents an amino acid. The peptide P1

(1H–2S–3S–4Y–5W–6Y–7A–8F–9N–10N–11K–12T) is a chain of

twelve nodes and P2 (1E–2P–3L–4Q–5L–6K–7M) is a chain of

seven nodes. The internal structure of the amino acid is ignored

but its unique characteristics are captured by specific coarse-

grained interaction(s) (as follows).

We consider the peptide chains and the graphene sheet on a

cubic lattice. A node occupies a cube (eight lattice sites) and the

bond length between consecutive nodes can vary (fluctuate)

between 2 and O10 in units of lattice constant. The bond fluc-

tuation description on a cubic lattice is known32 to incorporate

ample degrees of freedom while enhancing the computational

efficiency. Such bond fluctuation methods are extensively used in

investigating the structure and dynamics of complex polymer

systems, multi-component nano-composites,7,9 and protein

chains.17,18 Each node of the peptide chains interacts with the

neighboring nodes and the substrate (graphene) sites with a

generalized Lennard-Jones potential,

Uij ¼
��3ij��

�
s

rij

�12

þ 3ij

�
s

rij

�6
#
; rij\rc

"
(1)

where rij is the distance between the residues at sites i and j,

rc ¼ O8 is the range of interaction and s ¼ 1 in units of lattice

constant. The potential strength 3ij (a measure of the depth) is

unique for the interaction of each residue (node) with the

substrate and residue–residue interactions pair with appropriate

positive (repulsive) and negative (attractive) values. Since we are

focused on the binding of peptides to graphene, the interaction

between each residue (node) of the peptide and the substrate is
9104 | Soft Matter, 2012, 8, 9101–9109
critical. We use the binding energy of each residue (Table 1)

evaluated from an all-atom simulation as an input where 3ij is the

normalized interaction strength.

Specificity of residue–residue interaction is captured via a

generalized interaction strength7 based on the hydrophobic,

polar, and electrostatic characteristics weighted by its hydrop-

athy index (Table 1). The interactions between polar–polar (3PP)

and polar–electrostatic (3PE) residue groups are 3PP ¼ 3PE ¼�0.2

while the interactions between the electrostatic residues are

3E2E2¼ 3E3E3¼ 0.1 and 3E2E3¼�0.4, which are then weighted via

the hydropathy index (Table 1); these values are selected based

on our previous investigations.7,9 At dilute concentrations of

peptides, however, the residue–graphene interactions are more

important in assessing the binding than the residue–residue

interactions. As pointed out above, our goal is to identify the

residues that anchor the binding of peptides P1 and P2 to the

graphene sheet.

The graphene sheet is placed at the center. Peptide chains with

a concentration Cp are randomly distributed in the simulation

box initially. The Metropolis algorithm is used to move each

tethered residue (node) randomly as follows.7,9 A residue at a site

i is selected randomly to move to a randomly selected neigh-

boring lattice site j. As long as the excluded volume constraints

and the limitations on changes in the covalent bond length are

satisfied, the residue is moved from site i to site j with the

Boltzmann probability exp(�DEij/T), where DEij is the change

in energy between its new (Ej) and old (Ei) configurations

DEij ¼ Ej � Ei and T is the temperature in reduced units of the

Boltzmann constant and the energy (3ij). Attempts to move each

residue once defines a unit Monte Carlo step (MCS). Parameters

and variables (e.g., interaction energy, time) are generally in

arbitrary units for identifying the trends, i.e., the changes in

variation of the observables. The order of magnitude of these

parameters (e.g., energy, time) in a realistic unit can be estimated

from the units of the all-atom simulations. Note that the equi-

librium values of the adsorption (binding) energy of each residue

from the all-atom approach are used here as an input (see above).

Therefore, the relaxation time required for an amino acid to

reach equilibrium can be considered as a unit for time. The

maximum value of the adsorption energy, the normalizing factor

in the all-atom approach (see Table 1), can be a unit for energy.

Thus, the MCS time step t is of the order of magnitude t � (time

required to relax a residue z 40 ns) and the binding energy is
This journal is ª The Royal Society of Chemistry 2012
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scaled by the normalized factor (18.7 kcal mol�1). In order to

identify the relative binding, it is easier to work with the arbitrary

unit (in the following) to monitor the variations of the physical

quantities.

We consider dilute concentrations of peptides (Cp ¼ 0.001,

0.002) to avoid interpeptide clustering and to allow peptide

binding to be more visible. The graphene sheet is fixed but the

residues and therefore peptides execute their stochastic motion.

Simulations are performed for a sufficiently long time to assess

the probability of adsorption of peptides P1 and P2 to the gra-

phene sheet. We know from all-atom simulations (section 2) that

interaction between each amino acid (node) and the graphene is

attractive. Therefore, each node of both peptides can bind to

graphene in an appropriate span of time at least at low temper-

atures. On the other hand, peptides can be desorbed (unbind) on

raising the temperature to a sufficiently high value. In order to

distinguish relative binding of P1 and P2, we need to vary

temperature systematically and analyze the snapshots and data

for the physical quantities accordingly. We have examined a

number of local and global physical quantities such as binding

energy of each residue in each peptide, its mobility profiles,

binding profiles (i.e., the number of graphene sites around each

residue), variation of the root mean square (RMS) displacement

of the center of mass of each peptide and the radius of gyration

with the time steps. The simulations are carried out for a million

time steps with 100 independent samples to evaluate these

quantities. Qualitative behavior of peptide binding remains

unaffected by the sample size; data presented here are generated

on a 1003 lattice with a 242 sheet at the center.
4. Results and discussion

Using the bottom-up coarse-grained procedure described above,

simulations are carried out for a million time steps on a 1003

lattice at temperatures T ¼ 0.01–0.04 with the graphene sheet

immersed in a dilute solution of peptides (Cp ¼ 0.001). During

the course of simulations, stochastic motion of peptide chains

and residues, conformational fluctuations, binding and

unbinding are monitored via animations at each temperature.

Fig. 5 shows typical snapshots at the end of a million time steps

at different temperatures. Visual inspections of these snapshots

(along with animations) show that all peptides (P1 and P2) in

each sample bind to the graphene sheet at the low temperature

T ¼ 0.01. Raising the temperature leads to a decrease in binding

of both peptides with almost no binding at high temperatures.

However, binding of peptide P1 is sustained more than that of P2

at higher temperatures (e.g., T $ 0.03).
Fig. 5 Snapshots of peptides and the graphene sheet at the end of 106

time steps on a 1003 lattice at temperatures T ¼ 0.01, 0.02, 0.03, and 0.04

from left to right with peptides P1 (top row) and P2 (bottom row).

Residues (nodes) within the range of interaction of the sheet are shown as

spheres and those beyond the range but part of the chains are not shown

for clarity. In color: red, golden, and blue refer to hydrophobic, polar,

and electrostatic residues, respectively (see Table 1).
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The stochastic dynamics of a free chain or a particle in an

asymptotic time limit is diffusive. As the residues (and therefore

peptides) execute their stochastic movements and bind to the

graphene sheet, their motion is expected to slow down from its

diffusive dynamics (before binding). The global dynamics of

peptide chains can be identified from the dependence of the root

mean square displacement of its center of mass (Rc) on the time

steps (t), i.e., Rc f tn with the exponent n ¼ ½ for diffusion.

Variation of the RMS displacement of the center of mass (Rc) of

peptides with the time steps is presented in Fig. 6. From the Rc

versus t plot on the log–log scale, we see that both peptides (P1 and

P2) continue to diffuse at a high temperature (T ¼ 0.04). On

lowering the temperature (T¼ 0.01, 0.02), peptides still diffuse for

up to tz 105 steps until they bind to the graphene sheet.As a result

peptides slow down and the variation of Rc tapers off in the long

(asymptotic) time limit. This shows that simulations should be

carried out for a million time steps to identify the binding of

peptides to the graphene sheet. At a high temperature (T¼ 0.04),

peptides do not bind despite being in contact with the graphene

sheet for a long time. In the log scale, it is difficult to distinguish

which peptide, P1 or P2, slows down more (as a result of its

binding) in a long time at low temperatures. However, the varia-

tion ofRc with t plot on a normal scale (see the inset figure) shows

that P1 tends to move slower than P2 which implies that P1 has a

higher probability of binding to the graphene sheet than P2.

The interaction energy and adsorption energy of free residues

are already evaluated using all-atom simulations (eqn (1), Fig. 2,

Table 1) as well as a part of the peptide (Fig. 4). When a set of

residues are tethered together in a peptide chain (P1 and P2), the

energy of a peptide is not necessarily the sum of energies of its

individual residues in their free state. In fact the energy of a

peptide chain depends on its conformation and sequence. Thus,

the total energy of a residue in a chain can differ from that in its

free state (Fig. 2 and 4). Interaction of each residue along with the

steric constraints imposed by peptide bonds is very important in

controlling the conformation of the peptide chain. We evaluate

the average energy En (sum of residue–residue and residue–sheet)

of each residue in steady-state equilibrium in our coarse-grained
Fig. 6 Variation of the root mean square displacement Rc of peptides P1

and P2 with the time steps t on a log–log scale and normal scale (inset) at

temperatures T ¼ 0.01, 0.02, 0.03, and 0.04. Slopes of the data at T ¼
0.01, at a small time and longer time intervals are included for guidance.

Peptide concentration Cp ¼ 0.001, 1003 lattice, 100 independent samples

for the time steps t ¼ 106.
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Fig. 7 Mobility of each residue at temperatures T ¼ 0.01, 0.02, 0.03, and 0.04 in P1: 1H–2S–3S–4Y–5W–6Y–7A–8F–9N–10N–11K–12T and P2:
1E–2P–3L–4Q–5L–6K–7M. Peptide concentration Cp ¼ 0.001, 1003 lattice, 100 independent samples for the time steps t ¼ 106.
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approach in both peptide chains (P1 and P2) atT¼ 0.01–0.04.We

find that the residues 10N and 12T in peptide P1 have the lowest

energy; the residuewith the lowest energy inP2 is 2P.The energyof

these residues decreases with increasing temperature, which

implies that the equilibrium conformations of peptides are more

stable at higher temperatures. It is, however, not feasible to

identify residues that can bind to the graphene sheet from these

datasets. In the following we describe the mobility and substrate-

in-contact profiles which suggest that these low energy residues do

not anchor as much as others in binding the peptides.
Fig. 8 Substrate-in-contact profiles (Ng) of each residue at
1H–2S–3S–4Y–5W–6Y–7A–8F–9N–10N–11K–12T and P2: 1E–2P–3L–4Q–5L–6K

samples for the time steps t ¼ 106.

9106 | Soft Matter, 2012, 8, 9101–9109
Let us look at the relative mobility of each residue. The

average number of successful moves per unit time step of each

residue is defined as a measure of its mobility. The mobility of

each residue (Mn) in both peptides P1 and P2 is presented in

Fig. 7 at temperatures T ¼ 0.01–0.04. Apart from the end resi-

dues (which are less constrained by the covalent bonds than the

interior residues), the mobility of residues in P2 is generally

higher than that in P1. We know that the mobility of a residue

decreases upon its binding to the graphene sheet. The lower

mobility of residues (in P1 compared to P2) implies a higher
temperatures T ¼ 0.01, 0.02, 0.03, and 0.04 in P1:

–7M. Peptide concentration Cp ¼ 0.001, 1003 lattice, 100 independent

This journal is ª The Royal Society of Chemistry 2012

https://doi.org/10.1039/c2sm25870f


Pu
bl

is
he

d 
on

 2
7 

Ju
ly

 2
01

2.
 D

ow
nl

oa
de

d 
by

 A
ir

 F
or

ce
 B

as
e 

R
es

ea
rc

h 
L

ab
or

at
or

y 
(A

FR
L

) 
D

’A
zz

o 
R

es
ea

rc
h 

L
ib

ra
ry

 o
n 

12
/1

7/
20

23
 1

2:
31

:0
5 

PM
. 

View Article Online
probability of its binding. As expected, the mobility of the resi-

dues increases with increasing temperature.

The average number of graphene constituents (Ng) around

each residue within the range of interaction in the steady-state

equilibrium is a measure of its binding probability, i.e., the larger

the number of substrate sites to be adsorbed, the stronger the

binding. The substrate-in-contact (Ng) profiles of residues in both

peptides are presented in Fig. 8 at temperatures T ¼ 0.01–0.04.

We know that the graphene substrate attracts each residue in

both peptides, some more than others (see Fig. 2, Table 1).

Therefore almost all residues are expected to be adsorbed onto

the graphene sheet at low temperatures (T ¼ 0.01, 0.02) which is

clearly seen in Fig. 7 (also in snapshots, Fig. 3 and animations).

The difference in adsorption of residues in these peptides

becomes apparent on raising the temperature to T ¼ 0.03 where

the number of substrate-in-contact Ng of residues in P1 is
Fig. 9 Longitudinal (x, top) and transverse (y, bottom) density profiles of th

profiles. Statistics is the same as in Fig. 7 and 8.

This journal is ª The Royal Society of Chemistry 2012
substantially (two to four times) higher than that in P2. One may

immediately draw the conclusion that P1 is likely to bind to the

graphene sheet more strongly than P2. The trend for the differ-

ence in adsorption continues on further increasing the tempera-

ture although residues in both peptides become more desorbed.

All residues in P1 can bind to the graphene sheet with about the

same strength; three residues, 4Y–5W–6Y, seem to anchor it most

strongly. These findings are consistent with the estimates of their

binding energies in the all-atom simulation (Fig. 4).

Density profiles of peptides in the longitudinal (x, z) and

transverse (y, normal to sheet) directions are also analyzed (see

Fig. 9). Density of each component is calculated from the

number of lattice sites occupied by its constituents (P1, P2, or

sheet) divided by the total number of sites (L2) in each plane. It is

difficult to identify which peptide (P1 or P2) binds more to edges

than the surfaces of the graphene sheet due to lack of structural
e peptide. The density of the sheet is included in the longitudinal density

Soft Matter, 2012, 8, 9101–9109 | 9107
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details at the atomic scale. For example, the visual inspections

with the coarse-grained model (e.g. Fig. 5) do not show such

distinction. Such a distinction between the structures on the

edges and surfaces and associated bonding with the amino acids

can be made using all-atom simulations6 with the atomic reso-

lution: P2 as an edge binding peptide versus P1 as the surface

binding peptide. The effect of temperature on the equilibrium

adsorption and desorption can however be verified from the

density profiles (Fig. 9). The density of P2 is more homoge-

neously distributed around the sheet than that of P1 which seems

to be more concentrated around edges at the low temperature

T¼ 0.01 (longitudinal density profile). Since P1 is larger than P2,

adsorption of P1 to the edges may be due to morphological

constraints rather than the interaction with the sheet. Such a

distinction cannot be made from the transverse component of the

density profile (Fig. 9). Raising the temperature leads to

homogenization of peptide distribution around the sheet with

peptide P1 binding more strongly than P2 (transverse density

profile at T ¼ 0.03, 0.04 in Fig. 9).

We have also examined the effect of temperature on the size of

the peptides as they bind and unbind to the graphene sheet. The

variation of the radius of gyration and its components (see the

ESI, Fig. S1 and S3† for the transverse component in particular)

with the temperature shows how it elongates, a signature of

unbinding, on raising the temperature. The transverse (y)

component (normal to the sheet) decays with the time steps

before reaching its steady-state value; the rate of decay increases

on reducing the temperature as their binding. The thermal

response of the radius of gyration of P1 differs from that of P2

(Fig. S2 and S3†) which supports our observations discussed

above, i.e., the probability of P1 binding to graphene is higher

than that of P2.
5. Summary and conclusions

A coarse-grained approach with an all-atom to all-residue

description is used in hierarchy to investigate binding of peptides

P1 and P2 to a graphene sheet in asymptotic (long time) equi-

librium. We consider the adsorption (binding) of amino acids

(one at a time) onto a graphene sheet with all-atom details of

each component. Large scale MD simulations are performed to

evaluate the adsorption energy of each amino acid, which is a

measure of binding affinity. The relative binding energy of each

amino acid is then used as an input in a generalized LJ potential

for the all-residue coarse-grained approach. In the coarse-

grained description, a peptide is described by a set of nodes

tethered together via covalent bonds, where a node represents an

amino acid. The internal structure of the amino acid is thus

averaged out in the all-atom approach but its unique charac-

teristics are captured by specific interaction(s) composed from

the all-atom simulations.

We have examined a number of local and global physical

quantities such as binding energy of each residue in each peptide,

mobility profiles, binding profiles (i.e., the number of graphene

sites around each residue), variation of the root mean square

displacement of the center of mass of each peptide and the radius

of gyration with the time steps. We find that at low temperatures

both peptides (P1 and P2) can bind to the graphene sheet and

unbind on raising the temperature with almost no binding at high
9108 | Soft Matter, 2012, 8, 9101–9109
temperature as expected. The variation of the RMS displacement

of the peptide Rc with the time step t (analysis of a global

quantity) shows that P1 tends to move slower than P2, which

implies that P1 has a higher probability of binding to the gra-

phene sheet than P2. These trends are consistent with the analysis

of other global quantities as well, such as radius of gyration and

density profiles.

Analysis of physical quantities such as mobility and substrate-

in-contact profiles of each residue provides insight into the

binding of residues. We find that all residues are adsorbed onto

the graphene sheet at low temperatures (T ¼ 0.01, 0.02) as

expected. The difference in adsorption of residues in these

peptides appears on raising the temperature to T ¼ 0.03 where

the number of substrate-in-contact Ng of residues in P1 is

substantially (two to four times) higher than that in P2. Thus, P1

is likely to bind more strongly to the graphene sheet than P2. All

residues in P1 can bind to the graphene sheet with similar

strength; however, three residues, 4Y–5W–6Y, seem to anchor it

most strongly, which is consistent with the all-atom MD

simulations.

A two step hierarchical coarse-grained approach presented

here involves all-atom descriptions with off-lattice MD to

capture small-scale details and are used as an input to all-residue

CGMC on a lattice to span large-scales. Such an approach would

be useful in investigating more complex systems such as a

mixture of protein, membranes, and solvent, a subject of our

ongoing effort.

Acknowledgements

This work is supported by the Air Force Research Laboratory.

We thank Diana Lovejoy for careful reading of the manuscript

and corrections and referees for constructive criticism.

References

1 S. R. Whaley, D. S. English, E. L. Hu, P. F. Barbara and
A. M. Belcher, Selection of peptides with semiconductor binding
specificity for directed nanocrystal assembly, Nature, 2000, 405,
665–668.

2 M. Sarikaya, C. Tamerler, A. K. Y. Jen, K. Schulten and F. Baneyx,
Molecular biomimetics: nanotechnology through biology, Nat.
Mater., 2003, 2, 577–585.

3 Y. Fang, Q. Wu, M. B. Dickerson, Y. Cai, S. Shian, J. D. Berrigan,
N. Poulsen, N. Kroger and K. H. Sandhage, Protein-mediated
layer-by-layer syntheses of freestanding microscale titania structures
with biologically assembled 3-D morphologies, Chem. Mater., 2009,
21, 5704–5710.

4 M. J. Pender, L. A. Sowards, J. D. Hartgerink, M. O. Stone and
R. R. Naik, Peptide-mediated formation of single-wall carbon
nanotube composites, Nano Lett., 2006, 6, 40–44.

5 Y. Cui, S. N. Kim, S. E. Jones, L. L. Wissler, R. R. Naik and
M. C. McAlpine, Chemical functionalization of graphene enabled
by phage displayed peptides, Nano Lett., 2010, 10, 4559–4565.

6 S. N. Kim, Z. Kuang, J. M. Slocik, S. E. Jones, Y. Cui, B. L. Farmer,
M. C. McAlpine and R. R. Naik, Preferential binding of peptides to
graphene edges and planes, J. Am. Chem. Soc., 2011, 133, 14480–
14483.

7 R. B. Pandey, et al, Adsorption of peptides (A3, Flg, Pd2, Pd4) on
gold and palladium surfaces by a coarse-grained Monte Carlo
simulation, Phys. Chem. Chem. Phys., 2009, 11, 1989–2001.

8 H. Heinz, et al, Molecular interactions of peptides with gold,
palladium, and Pd–Au bimetal surfaces in aqueous solution, J. Am.
Chem. Soc., 2009, 131, 9704–9714.

9 R. B. Pandey, et al, A layer of clay platelets in a peptide (M1:
HGINTTKPFKSV) matrix: binding, encapsulation and
This journal is ª The Royal Society of Chemistry 2012

https://doi.org/10.1039/c2sm25870f


Pu
bl

is
he

d 
on

 2
7 

Ju
ly

 2
01

2.
 D

ow
nl

oa
de

d 
by

 A
ir

 F
or

ce
 B

as
e 

R
es

ea
rc

h 
L

ab
or

at
or

y 
(A

FR
L

) 
D

’A
zz

o 
R

es
ea

rc
h 

L
ib

ra
ry

 o
n 

12
/1

7/
20

23
 1

2:
31

:0
5 

PM
. 

View Article Online
morphology, J. Polym. Sci., Part B: Polym. Phys., 2010, 48, 2566–
2574.

10 L. F. Drummy, et al, Bioassembled layered silicate–metal
nanoparticle hybrids, ACS Appl. Mater. Interfaces, 2010, 2, 1492–
1498.

11 S. M. Tomasio and T. R. Walsh, Modeling the binding affinity of
peptides for graphitic surfaces. Influences of aromatic content and
interfacial shape, J. Phys. Chem., 2009, 113, 8778–8785.

12 P. L. Freddolino, C. B. Harrison, Y. Liu and K. Schulten, Challenges
in protein folding simulations: timescale, representation, and analysis,
Nat. Phys., 2010, 6, 751–758.

13 A. P. Lyubartsev and A. Laaksonen, Calculation of effective
interaction potentials from radial distribution functions: a reverse
Monte Carlo approach, Phys. Rev. E: Stat. Phys., Plasmas, Fluids,
Relat. Interdiscip. Top., 1995, 52, 3730–3737.

14 J. Zhou, S. Chen and S. Jiang, Orientation of adsorbed antibodies on
charged surfaces by computer simulation based on a united-residue
model, Langmuir, 2003, 19, 3472–3478.

15 A. E. van Giessen and J. E. Straub, Mote Carlo simulations of
polyalanine using a reduced model and statistics-based interaction
potential, J. Chem. Phys., 2005, 122, 0249041–0249049.

16 D. Reith, M. Putz and F. Muller-Plathe, Deriving effective mesoscale
potentials from atomistic simulations, J. Comput. Chem., 2003, 24,
1624–1636.

17 R. B. Pandey and B. L. Farmer, Conformation of a coarse-grained
protein chain (an aspartic acid protease) model in effective solvent
by a bond-fluctuating Monte Carlo simulation, Phys. Rev. E: Stat.,
Nonlinear, Soft Matter Phys., 2008, 77, 031902–031910.

18 R. B. Pandey and B. L. Farmer, Global structure of a human
immunodeficiency virus-1 protease (1DIFA dimer) in an effective
solvent medium by a Monte Carlo simulation, J. Chem. Phys.,
2010, 132, 125101–125106.

19 A. Liwo, C. Czaplewski, J. Pillardy and H. A. Scheraga, Cumulant-
based expressions for the multibody terms for the correlation
between local and electrostatic interactions in the united-residue
force field, J. Chem. Phys., 2001, 115, 2323–2347.

20 A. Liwo, C. Czaplewski, S. Oldziej and H. A. Scheraga,
Computational techniques for efficient conformational sampling of
protein, Curr. Opin. Struct. Biol., 2008, 18, 134–139.

21 F. Ercolessi and J. Adams, Interatomic potentials from first-principle
calculations: the force-matching method, Europhys. Lett., 1994, 26,
583–588.

22 J. Zhou, I. F. Thorpe, S. Izvekov and G. A. Voth, Coarse-grained
peptide modeling using a systematic multiscale approach, Biophys.
J., 2007, 92, 4289–4303.

23 S. J. Marrink and A. E. Mark, molecular dynamics simulation of the
formation, structure, and dynamics of small phospholipid vesicles, J.
Am. Chem. Soc., 2003, 125, 15233–15242.

24 S. J. Marrink and A. E. Mark, The mechanism of vesicle fusion as
revealed by molecular dynamics simulations, J. Am. Chem. Soc.,
2003, 125, 11144–11145.

25 S. J. Marrink, A. H. de Vries and A. E. Mark, Coarse-grained model
for semi-quantitative lipid simulations, J. Phys. Chem. B, 2004, 108,
750–760.

26 S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman and
A. H. de Vries, The MARTINI forcefield: coarse-grained model for
biomolecular simulations, J. Phys. Chem. B, 2007, 111, 7812–7824.

27 L. X. Peng, L. Yu, S. B. Howell and D. A. Gough, Aggregation
properties of a polymeric anticancer therapeutic: a coarse-grained
modeling study, J. Chem. Inf. Model., 2011, 51, 3030–3035.
This journal is ª The Royal Society of Chemistry 2012
28 Z. Wu, Q. Cui and A. Yethiraj, A new coarse-grained force field for
membrane-peptide simulations, J. Chem. Theory Comput., 2011, 7,
3793–3802.

29 J. Sorensen, P. Xavier, K. K. Skeby, S. J. Marrink and B. Schiott,
Protofibrillar assembly towards the formation of amyloid fibrils, J.
Phys. Chem. Lett., 2011, 2, 2385–2390.

30 K. R. Hadley and C.McCabe, A simulation study of the self-assembly
of coarse-grained skin lipids, Soft Matter, 2012, 8, 4802–4814.

31 D. N. LeBard, B. G. Levine and P. Mertmann, Self-assembly of
coarse-grained ionic surfactants accelerated by graphics processing
units, Soft Matter, 2012, 8, 2385–2397.

32 Monte Carlo andMolecular Dynamics Simulations in Polymer Science,
ed. K. Binder, Oxford University Press, New York, 1995.

33 R. G. Larson, Q. Zhou, S. Shanbhag and S. J. Park, Advances in
polymer melt rheology, AIChE J., 2007, 53, 542–548.

34 Modeling and Simulation in Polymers, ed. P. D. Gujrati and A. I.
Leonov, Wiley-VCH, 2010, ch 2.

35 K. Kremer, G. S. Grest and I. Carmesin, Crossover from rouse to
reptation dynamics: a molecular dynamics simulation, Phys. Rev.
Lett., 1988, 61, 566–569.

36 I. Carmesin and K. Kremer, The bond fluctuation method: a new
effective algorithm for the dynamics of polymers in all spatial
dimension, Macromolecules, 1988, 21, 2819–2823.

37 R. B. Pandey, H. Heinz, J. Feng and B. L. Farmer, Bio-
functionalization and immobilization of a membrane via peptide
binding (CR3-1, S2) by a Monte Carlo simulation, J. Chem. Phys.,
2010, 133, 095102–095108.

38 R. S. Hissam, B. L. Farmer and R. B. Pandey, Scaffolding of an
antimicrobial peptide (KSL) by a scale-down coarse-grained
approach, Phys. Chem. Chem. Phys., 2011, 13, 21262–21272.

39 J. Feng, R. B. Pandey, R. J. Berry, B. L. Farmer, R. R. Naik and
H. Heinz, Adsorption mechanism of single amino acid and
surfactant molecules to Au {111} surfaces in aqueous solution:
design rules for metal binding molecules, Soft Matter, 2011, 7,
2113–2120.

40 G. Collier, N. Vellore, J. Yancey, S. Stuart and R. Latour,
Comparison between empirical protein force fields for the
simulation of the adsorption behavior of structured LKpeptides on
functionalized surfaces, Biointerphases, 2012, 7, 1–19.

41 F. Iori, R. Di Felice, E. Molinari and S. Corni, GolP: an atomistic
force-field to describe the interaction of proteins with Au (111)
surfaces in water, J. Comput. Chem., 2009, 30, 1465–1476.

42 C. R. Herbers, K. Johnston and N. F. A. van der Vegt, Modelling
molecule–surface interactions-an automated quantum-classical
approach using a genetic algorithm, Phys. Chem. Chem. Phys.,
2011, 13, 10577–10583.

43 J. Katoch, S. N. Kim, Z. Kuang, B. L. Farmer, R. R. Naik,
S. A. Tatulian and M. Ishigami, Structure of a peptide adsorbed on
graphene and graphite, Nano Lett., 2012, 12, 2342–2346.

44 J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid,
E. Villa, C. Chipot, R. D. Skeel, L. Kal�e and K. Schulten, Scalable
molecular dynamics with NAMD, J. Comput. Chem., 2005, 26,
1781–1802.

45 C. Rajesh, C. Majumder, H. Mizuseki and Y. Kawazoe, A theoretical
study on the interaction of aromatic amino acids with graphene and
single walled carbon nanotube, J. Chem. Phys., 2009, 130, 124911.

46 M. Zhang, B.-C. Yin, X.-F. Wang and B.-C. Ye, Interaction of
peptides with graphene oxide and its application for real-time
monitoring of protease activity, Chem. Commun., 2011, 47, 2399–
2401.
Soft Matter, 2012, 8, 9101–9109 | 9109

https://doi.org/10.1039/c2sm25870f

	Stability of peptide (P1 and P2) binding to a graphene sheet via an all-atom to all-residue coarse-grained approachElectronic supplementary information (ESI) available. See DOI: 10.1039/c2sm25870f
	Stability of peptide (P1 and P2) binding to a graphene sheet via an all-atom to all-residue coarse-grained approachElectronic supplementary information (ESI) available. See DOI: 10.1039/c2sm25870f
	Stability of peptide (P1 and P2) binding to a graphene sheet via an all-atom to all-residue coarse-grained approachElectronic supplementary information (ESI) available. See DOI: 10.1039/c2sm25870f
	Stability of peptide (P1 and P2) binding to a graphene sheet via an all-atom to all-residue coarse-grained approachElectronic supplementary information (ESI) available. See DOI: 10.1039/c2sm25870f
	Stability of peptide (P1 and P2) binding to a graphene sheet via an all-atom to all-residue coarse-grained approachElectronic supplementary information (ESI) available. See DOI: 10.1039/c2sm25870f
	Stability of peptide (P1 and P2) binding to a graphene sheet via an all-atom to all-residue coarse-grained approachElectronic supplementary information (ESI) available. See DOI: 10.1039/c2sm25870f
	Stability of peptide (P1 and P2) binding to a graphene sheet via an all-atom to all-residue coarse-grained approachElectronic supplementary information (ESI) available. See DOI: 10.1039/c2sm25870f


