
A Hierarchical Coarse-Grained (All-Atom-to-All-Residue)
Computer Simulation Approach: Self-Assembly of
Peptides
Ras B. Pandey1*, Zhifeng Kuang2, Barry L. Farmer2

1 Department of Physics and Astronomy, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America, 2 Materials and Manufacturing Directorate,

Air Force Research Laboratory, Wright Patterson Air Force Base, Dayton, Ohio, United States of America

Abstract

A hierarchical computational approach (all-atom residue to all-residue peptide) is introduced to study self-organizing
structures of peptides as a function of temperature. A simulated residue-residue interaction involving all-atom description,
analogous to knowledge-based analysis (with different input), is used as an input to a phenomenological coarse-grained
interaction for large scales computer simulations. A set of short peptides P1 (1H 2S 3S 4Y 5W 6Y 7A 8F 9N 10N 11K 12T) is
considered as an example to illustrate the utility. We find that peptides assemble rather fast into globular aggregates at low
temperatures and disperse as random-coil at high temperatures. The specificity of the mass distribution of the self-assembly
depends on the temperature and spatial lengths which are identified from the scaling of the structure factor. Analysis of
energy and mobility profiles, gyration radius of peptide, and radial distribution function of the assembly provide insight into
the multi-scale (intra- and inter-chain) characteristics. Thermal response of the global assembly with the simulated residue-
residue interaction is consistent with that of the knowledge-based analysis despite expected quantitative differences.
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Introduction

Peptides are some of the most versatile constituents in designing

advanced materials, from bio-functionalized nanoparticles [1–10]

to modulating the kinetics of proteins in cells and beyond.

Specificity of the amino acids in a short peptide chain is key to

their selective binding (covalent and non-covalent) to substrates.

Peptides have become a valuable constitutive component in both

materials as well as drug design due to prolific conformational

response with specific residue interactions. Understanding the

unique interaction of a peptide is a challenge in itself. For example,

the residue-residue interaction in a solution of free amino acids

could be different from a residue-residue interaction in an isolated

peptide (intra-chain) or in a peptide melt due to the interplay

between the steric constraints of covalent peptide bonds and

specific residue interactions. Including solvent, substrate, and

other components enhances the complexity in understanding the

effect of residue-residue interactions. To probe such systems, one

has to start from the building blocks, i.e. amino acids, and develop

a feasible method (e.g., bottom-up) to examine the consequences

of residue interactions. In this article we introduce such an

approach and address how peptides assemble. Since temperature

competes directly with the interactions, it is a natural parameter to

examine its response in peptide assembly and dispersion.

Residue-residue interaction [11–18] is critical in understanding

the multi-scale equilibrium structure of large peptides and proteins

where it is not feasible to incorporate atomic scale details, a

challenging issue in computational modeling. Some degree of

coarse-graining and approximations are therefore unavoidable in

order to carry out large-scale simulations [19–30]. Such proce-

dures include developing effective interaction potentials among

residues, exploring the phase space selectively, resorting to efficient

and effective methods, etc. In modeling the structure of proteins,

knowledge-based contact matrix [11–18] is extensively used to

develop phenomenological residue-residue interactions. A number

of knowledge-based contact potentials based on a growing

ensemble of protein data base has been developed to understand

the folding dynamics of proteins. We propose a simulated residue-

residue interaction based on an all-atom Molecular Dynamics

(MD) simulation. Analogous to knowledge-based phenomenolog-

ical interaction [17,18], simulated residue-residue interaction

matrix can be used as an input to phenomenological interaction

in hierarchy to carry out large-scale computer simulations (see

below). Such a coarse-grained approach has been recently used to

understand the binding of peptides with a graphene substrate [1]

where the simulated interaction (residue-substrate) matrix is

relatively small. Results of all-atom approach, i.e., the relative

binding of each residue are verified by the coarse-grained method

before large-scale simulations were performed [1]. In this article,

we focus on a residue-residue interaction matrix, which is much

larger than the residue-substrate [1] interaction matrix and study

the self-assembly of peptides, P1.

As mentioned above, solvent plays an important role in

modulating the structure and assembly of peptides and proteins.
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Understanding the self-assembly of unsolvated peptides (i.e. in

vacuum) first is also important before investigating the effect of

solvent. A number of neutron scattering experiments are recently

performed on powder samples of proteins where simulations in

vacuum are used to interpret the scattering data [31–33]; these

studies also include the effect of solvent by identifying the

differences. Thus, apart from the simplicity, there is a value in

exploring the structure and dynamics of peptides in vacuum

(appropriate for powder samples), i.e., constraining to residue-

residue interactions alone before we incorporate the solvent.

Model and Method

Simulations are carried out in two steps in hierarchy (bottom-up

coarse-graining): (i) estimate the residue-residue interaction among

20 amino acids (210 interaction pairs of the 20620 matrix) using

an all-atom MD simulation, and (ii) use the simulated residue-

residue interaction matrix as an input to a phenomenological

interaction in the coarse-grained representation of peptide chains

(see below).

All-atom approach
The actual residue interaction inside proteins and between

proteins depends on amino acid size, geometry, conformation and

the local biochemical environment. It is a very difficult task to

develop a portable force field to take all the effects into account.

The extreme simplicity of the potential function is based on the

hypothesis that a system fluctuates around an equilibrium

reference configuration. To find the equilibrium reference

configuration between two residues, we resort to molecular

dynamics simulation in vacuum using the AMBER ff99SB force

field.

A total of 210 residue pairs are simulated in the same protocol

using NAMD2.9 simulation software. The initial backbone

positions of two residues are the same. The mass centers of

backbones are 1 nm apart. Each amino acid is capped by an acetyl

beginning group, ACE, and an N-methylamine ending group,

NME, to avoid strong terminal interactions and to mimic the bond

connectivity. Due to bond connectivity and counter ionic effect in

solution, like charged residues can appear side by side in a protein.

For charged residues, necessary counter ions are added to

neutralize the side chains. Each system is minimized for 2000

steps using a sophisticated conjugate gradient and line search

algorithm, then heated up to 300 K increasing 30 K from 0 K

every 1000 steps, and then equilibrated for 20 ns in vacuum setting

a cutoff distance of 1.2 nm and a switching distance of 1.0 nm for

both van der Waals and electrostatic interactions. Finally, another

10 ns production run is performed and trajectories are stored

every 10 ps for each system.

The above MD simulations are independently repeated three

times for each system. The obtained total system potentials in the

last 10 ns for each of the three independent simulations are

averaged along their own trajectories and compared. The

trajectories corresponding to the lowest average total potential in

the last 10 ns are used to calculate the interaction energy between

two residues according to the X-PLOR van der Waals function
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The interaction energy matrix is presented in Table 1. In our

simulations, we assume that all residue pairs are exposed to each

other. In reality, hydrophobic residues are buried inside a protein,

whereas hydrophilic residues are exposed to the environment. We

constrain here to residue-residue interactions alone for simplicity;

solvent (explicit and implicit) could be incorporated to modulate

the distribution of residues (hydrophobic or hydrophilic depending

on the nature of solvent) and therefore the structure of the peptide

accordingly.

All-residue approach
The intra-molecular detail of each residue is ignored in a

coarse-grained description of the peptide, which is a set of nodes

tethered together by flexible peptide bonds on a cubic lattice [1]. A

residue is represented by a node and its specific characteristics are

captured by unique residue-residue interactions (see Table 1). We

use a bond-fluctuation method as before [17,18] to exploit the

efficiency of the discrete lattice with ample degrees of freedom.

Peptide nodes interact with neighboring nodes with a generalized

Lennard-Jones potential,

Uij~ eij
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where rij is the distance between the residues at site i and j, rc = !8 is

the range of interaction and s = 1 in units of lattice constant. The

residue-residue pair interaction (Table 1) is used for the coefficients

eij (a measure of the depth) of the generalized LJ potential.

We consider a cubic lattice of size L3. Peptides (P1) of a volume

fraction (Cp) are then placed in the box in random configurations

subject to excluded volume constraint. With the constraints on

fluctuating bond length l (2 # l# !(10) in units of lattice constant)

and excluded volume, each residue performs its stochastic motion

with the Metropolis algorithm as follows. An attempt is made to

move a randomly selected residue of a randomly selected peptide

chain from its current position at site (i) to a neighboring site j with

the Boltzmann probability exp(2DEij/T), where DEij is the change

in energy (Eq. 3) between its new (Ej) and old (Ei) configuration

DEij = Ej – Ei and T is the temperature in reduced units of the

Boltzmann constant and the energy (eij). Attempts to move each

residue in the simulation box once defines the unit Monte Carlo

step (MCS). Simulations are performed for a sufficiently long time

to identify the structural changes from small to large scales. A

number of local and global physical quantities are evaluated

during the simulations including the structural profile of each

residue, the variations of the root mean square (RMS) displace-

ment of the center of mass of each peptide and the radius of

gyration with the time steps, structure factor and radial

distribution function of the self-assembled structures. Simulations

are performed at different temperatures at a peptide concentration

Cp = 0.1 with as many as 100 independent samples on a 643 lattice

to estimate the average value of the physical quantities. We have

carried out simulations with different peptide concentrations but

All-Atom-to-All-Residue Hierarchical Approach
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we will focus on the low concentration for clarity of the structural

evolution with the temperature. Different size lattices are also used

to assure that results on the qualitative trends of the physical

quantities remain independent of the sample size.

Results and Discussion

Peptides (P1) are randomly distributed initially in their random

conformations in the simulation box. As residues perform

stochastic motion with the Metropolis algorithm, each peptide

moves and undergoes conformational changes with the time step.

Peptide segments within the range of interaction may be bound

due to non-covalent interactions and unbound due to thermal

agitation. Distribution of peptides evolves with time and reaches a

steady-state configuration. Time to reach the steady-state equilib-

rium depends on the temperature. Figure 1 shows a set of typical

snapshots at the steady state at a range of low-to-high tempera-

tures, which illustrates the differences in morphology due to

distribution of peptides. Both, residue-residue interactions and

temperature compete in the self-assembly of peptides and their

dispersion. At low temperatures (T = 0.7, 0.8), the residue-residue

interaction is more dominant over the thermal energy. Peptides

self-assemble into aggregates with relatively high density due to

attractive residue-residue interactions. Peptides disperse at high

temperature (T = 1.0) (overcoming the non-covalent residue-

residue interactions) with almost uniform low density throughout

the lattice. The aggregation of peptides is interaction-driven at low

temperature where system reaches the steady state rather quickly.

In fact, at low temperatures some peptides may be trapped very

quickly in the self-assembly process without exploring all possible

conformations. Peptides explore conformations rather more

thoroughly at high temperatures. Consequences of such a

difference in thermal response of peptides should be reflected in

physical properties of peptides and their self-assembly (see below).

As mentioned above, we have analyzed both local and global

physical quantities. The energy profile (energy of each residue in

each peptide at equilibrium) of the peptide P1 is presented in

Figure 2 at different temperatures (T = 0.5–1.0). We track the

energy of each residue and peptide during the course of the

simulation. The energy En (n = 1, 2, …, 12) of each residue node is

the average value evaluated from all peptide chains and all

independent samples using Eq. 3. The profile pattern remains

nearly the same at low and high temperatures albeit with lower

and higher energy values. Two residues with the highest and

lowest energy are 10N and 11K, respectively, which shows that not

only the specificity of a residue is important but also its sequential

position (e.g., compare the energy of 9N and 10N). The

corresponding mobility profile of the peptide (see Figure S1)

shows that minimum energy of a residue does not necessarily

correspond to lowest mobility. The residues at the ends (1H, 12T)

are relatively more mobile than those in the interior due to

constraints imposed by the peptide bonds. Residues 7A and 6Y

appear to be the most mobile and are the second lowest and

second highest energy, respectively (see Figure 2). Thus energy

alone is not a measure of mobility of a residue in a peptide chain.

Let us examine how peptides move and conform. Figure 3

shows the variation of the average root mean square (RMS)

displacement Rc of the center of mass of a peptide chain with the

time step (t) in temperature range T = 0.5–1.0. The asymptotic

dependence of Rc on t can be described by a power-law, Rc ‘ tc,

where c = K describes the diffusive nature of the peptides’ motion.

At a high temperature (T = 0.5–1.0), c < K (see Figure 4) but c (c
< 0.320.4) ,K at low temperatures T = 0.5–0.8, which implies

sub-diffusive dynamics of the peptide chain. The residue-residue

Table 1. The minimum pairwise interaction energy (kcal/mol) of 20 amino acids from all-atom MD simulation in vacuum (like
charge pair interaction energy, i.e., D-D, D-E, E-E, R-R, R-K and K-K are positive all others are negative).

A G V L I P F M W C D E R K H N Q S T Y

A 6

G 3 7

V 5 7 3

L 5 8 4 4

I 3 4 3 4 6

P 2 2 2 2 5 1

F 8 6 4 8 6 4 7

M 7 8 5 8 5 4 6 8

W 9 9 9 12 11 11 14 14 15

C 7 10 4 4 8 9 6 8 8 5

D 21 23 22 21 21 11 20 27 26 30 67

E 22 21 21 22 21 15 22 27 11 29 68 78

R 22 21 27 26 25 27 23 24 30 19 132 138 41

K 21 23 23 26 25 29 31 6 39 22 138 149 45 43

H 11 9 29 29 8 10 13 14 18 11 29 30 30 29 15

N 11 14 11 10 9 6 12 14 15 13 22 25 19 24 16 18

Q 12 12 11 11 10 11 13 12 12 12 37 30 31 30 15 19 23

S 11 14 9 9 6 3 13 9 16 7 39 34 22 23 14 13 18 13

T 10 12 6 10 6 3 12 8 12 11 39 39 19 22 17 13 18 12 10

Y 10 11 7 7 5 9 10 12 11 10 25 24 35 29 14 10 19 11 10 12

doi:10.1371/journal.pone.0070847.t001
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interaction dominates over the thermal energy at low tempera-

tures. The peptide chains self-assemble into aggregates on

encountering each other. Because of the self-organizing morphol-

ogy, the mobility of the residues, and therefore the peptide chains,

decreases at low temperatures leading to sub-diffusive dynamics.

Peptide chains become free and diffuse as residues unbind from

assembly at high temperatures. The overall dynamics of peptides is

thus consistent with the visual inspection of the snapshots

(Figure 1). Variation of the average radius of gyration (Rg) of

peptide chains with the time step (inset Figure 3) suggests that the

conformations have reached equilibrium during the course of

simulation at each temperature. How does the equilibrium value

of Rg depend on the temperature? The plot of Rg with the

temperature (T) is included in Figure 4 (inset). We see that the

radius of gyration increases monotonically on raising the

temperature in the low-to-intermediate temperature range

(T = 0.5–1.0) and approaches a constant at high temperatures.

Large-scale structures resulting from the self-assembly of

peptides can be studied by examining the radial distribution

function (RDF), which is the average number of particles (residues)

from the center. We have analyzed (figure S2) the spatial

dependence of RDF in the temperature range T = 0.5–1.5. We

find that the rapid assembly of peptides at low temperature

(T = 0.5) leads to an aggregate with high density at the center

followed by a sharp decay with the distance (r). The density of

aggregates spreads on raising the temperature (T = 0.5–0.8).

Peptide chains disperse at high temperature where no aggregate

develops.

The multi-scale morphology of the self-assembly of peptides can

be studied by analyzing the structure factor S(q) (Figure 4),

S(q)~S
1

N
D
XN

j~1

e{i~qq:rj D2TD~qqD ð4Þ

where rj is the position of each residue and |q| = 2p/l is the wave

vector of wavelength, l. One can study the mass distribution of

particles (residues) by estimating the exponent n in the power-law

scaling S(q) / q21/n. Spatial scaling of mass (M) with the radius of

gryation (Ra < l) of the aggregate, M / Ra
D provides an estimate

of its effective dimension D = 1/n. Higher value of D, e.g., D = 3

implies a solid while D = 2 represents an ideal chain with a

heterogeneous mass distribution on a cubic lattice; D.3 does not

make sense and could be an artifact of fitting data in the wrong

regions including crossover regimes.

Variation of the structure factor S(q) with q provides an insight

into a rather rich structure at all length scales. Note that the wave

length l<5–15 (in units of lattice constant) is comparable to spatial

spread of a peptide aggregate and corresponds to wave vector q <
0.5–1.0; the radius of gyration of peptide Rg<3.2–4.2 (see figure 3).

At the low temperature (T = 0.5), we see a rather solid morphology

(q<0.4–0.8). Spreading of the solid-like morphology of self-assemly

of peptides is clearly seen on raising the temperature (T = 0.5, 0.6).

Oscillation in S(q) sets at smaller scales (order of the chain length)

at higher temperature (T = 0.8) becomes persistent at all length

scales at high temperatures (T$ 1.0) with dispersion of peptide

chains. We would like to point out that the oscillatory nature of the

Figure 1. Snapshots of peptides P1 at T = 0.7 (top left), 0.8 (top right), 0.9 (bottom left), 1.0 (bottom right) at the end of 56105 MCS
time on a 643 lattice with peptide concentration Cp = 0.1.
doi:10.1371/journal.pone.0070847.g001
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structure factor is not an artifact of cubic lattice considered here

but due to thermodynamics of peptides at high temperatures. A

general fit of oscillatory data at T = 1.0 shows that the mass

distribution of peptide is heterogeneous in morphology of a

random walk. Thus, the structural evolution of peptides, from a

highly dispersed peptide chains at high temperatures (an expected

thermodynamic behavior) to its aggregation on reducing the

temperature can be studied by such hierarchical coarse-grained

approach. Unfortunately, we are not aware of experimental data

on such assembly at present.

Alternatively, one may consider other interactions such as

knowledge-based interaction (previously used in study of protein

folding [17,18]) which is derived from the ensemble of protein

structures available in the protein data bank (PDB). X-ray

crystallographic data in PDB represent snapshots of proteins’

conformations in their native structures in unique solvent.

Knowledge-based analysis [12] involves further assumptions and

approximations to derive residue-residue contact maps among the

residues. Thus, the knowledge-based interaction captures the

essence of residue-residue interaction in a different environment

which is much more complex than the simulated residue-residue

interaction considered here. This does not mean that the

knowledge-based interaction is superior than the simulated one

as the prior method resorts to a number of assumptions and

approximations. Nevertheless it is worth exploring what happens if

we use the knowledge-based residue-residue interactions (previ-

ously used in study of protein folding [17,18]) in place of simulated

interaction? We have carried out such simulation with the classic

MJ interaction matrix [12]. Data for the variation of the structure

factor S(q) with q is presented in figure 5. Note that the

temperature scales are dramatically different from those used

with simulated residue-residue interaction matrix. This is primarily

due to differences in magnitude of the MJ matrix elements [12]

and the simulated interaction (table 1). We see that peptide chains

assemble into aggregates with a rather solid density (D<3) at the

low temperature (T = 0.010) which shows a dispesrive trend of

peptides on increasing the temperature (e.g. D<2.6 at T = 0.012).

Despite the shift in temperature scale, the general self-organizing

trend (from aggregation to dispersion) appears consistent with our

hierarchical coarse-grained approach. Because of the differences in

assumptions and approximation made in deriving the knowledge-

based contact matrix [12] and the direct simulation of invidual

residue-residue interaction (i.e. with free residue unlike the

residues as a part of protein), quantitative differences (figure 4

and 5) are not un-expected. Such coarse-grained approach with

specific residue-residue interaction matrix provides an additional

alternative to address complex problems in bio-inspired assembly.

Conclusions

A hierarchical coarse-graining scheme introduced here thus

provides a useful method to investigate multi-scale self-organizing

structures of such complex constituents as peptides (e.g. P1). It

involves all-atom MD simulations to estimate the residue-residue

interactions in which twenty amino acids constitute 210 indepen-

dent pairs, each of which has its unique interaction energy

(Table 1). The simulated interaction matrix forms the basis for the

residue-residue interaction similar to knowledge-based contact

matrices [12–18] in an all-residue representation of the peptide

chain. The structural evolutions are analyzed in detail by

examining both local and global physical quantities spanning the

entire scale.

Figure 2. Energy (En) of each residue of P1: 1H 2S 3S 4Y 5W 6Y 7A 8F 9N 10N 11K 12T at temperature T = 0.5–1.0. Simulations are performed
on a 643 lattice with the peptide concentration Cp = 0.1 with as many as 100 independent samples to estimate the average.
doi:10.1371/journal.pone.0070847.g002
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Visualizations of the self-organizing assembly clearly show a

systematic change in morphology at a range of length scales with

the temperature. We find that the energy profile of residues does

not necessarily dictate their mobility, which would have been

expected for a simple system with its thermodynamics controlled

primarily by interactions. Spatial distribution of residues within a

peptide does respond to self-assembly of peptides. The dynamics of

peptides as they perform their stochastic motion during the self-

Figure 3. Variation of the root mean square (RMS) displacement of the center of mass of peptides with the time steps on a log-log
scale. Inset figures show the variation of the radius of gyration with the time step (top left) and dependence of the equilibrium Rg on the
temperature (T). Simulations are performed on a 643 lattice with the peptide concentration Cp = 0.1 with as many as 100 independent samples to
estimate the average.
doi:10.1371/journal.pone.0070847.g003

Figure 4. Variation of the structure factor S(q) with the wave vector q at temperature T = 0.5–1.0. A spatial scale of the wave vector q is
included in the inset for a guide. Simulations are performed on a 643 lattice with the peptide concentration Cp = 0.1 with as many as 100 independent
samples to estimate the average.
doi:10.1371/journal.pone.0070847.g004
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assembly and their dispersion shows distinct but appropriate

characteristics, i.e., sub-diffusion and diffusion. The radius of

gyration of peptides responds linearly to temperature as the self-

organized aggregates expand on raising the temperature before

approaching saturation at high temperatures. The spatial variation

of the radial distribution function reveals that the solid core of the

aggregates softens as the density spreads with the temperature.

The scaling of the structure factor with the wave vector provides

valuable insight into the multi-scale structure of the assembly. For

example, on raising the temperature from its low value, the

relatively high density of the self-assembly expands over the length

scale, which is sensitive to temperature, before reaching a well-

dispersed distribution of an ideal chain at high temperature. We

hope that this study will stimulate experiments with multi-scale

resolution to verify or contradict our predictions. Such a

hierarchical coarse-graining is not limited to Monte Carlo

simulations with bond-fluctuation methods (used here) but could

be extended to such approach as Molecular Dynamics.

As mentioned in the beginning, interaction of peptides in a

solvent matrix (implicit or explicit) plays a critical role in

modulating the structure and dynamics of peptides and its

assembly. For example, we have shown [23], how the structure

and dynamics of a protein is affected by the quality of solvent by

incorporating the hydrophobicity of each amino acids and its

unique interaction in an effective solvent medium. Structure of a

histone is found to exhibit a non-monotonic response to solvent

quality in a recent Monte Carlo simulation [34]. There are

enormous opportunities to improve the simulated residue-residue

interaction matrix as well as in incorporating such realistic factors

as solvent and substrate, some of which may be taken up in future

efforts.

Supporting Information

Figure S1 Mobility (Mn: average number of successful hops) of

each residue of P1: 1H 2S 3S 4Y 5W 6Y 7A 8F 9N 10N 11K 12T at

temperature T = 0.5–1.0. Simulations are performed on a 643

lattice with the peptide concentration Cp = 0.1 with as many as 100

independent samples to estimate the average.

(TIF)

Figure S2 Variation of the radial distribution function (RDF), a

measure of the number of particles (residues) with distance r at

temperature T = 0.5–1.5. Simulations are performed on a 643

lattice with the peptide concentration Cp = 0.1 with as many as 100

independent samples to estimate the average.

(TIF)
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