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Abstract: Molecular recognition is the specific non-covalent binding of two or more molecules.
Molecular recognition plays an important role in nature such as materials self-assembly, cellular signal
transduction and the expression of genetic information, and drug design. Mathematical modeling and
computational techniques from quantum mechanics to classical molecular mechanics are reviewed in
understanding the molecular recognition. Mathematically the molecular recognition problem can be
modeled as an optimization problem. Challenges in solving the optimization problem are reviewed.
Novel clustering and binning selection schemes are reported to increase the flexible ligand-protein
docking prediction success rate from 63% to 90%.
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1 Introduction

The integration of mathematics, computation and applications has yielded and will continue
to yield results never before possible and ideas never before imagined. The cross-fertilization of
mathematics, computation and chemistry has been recognized by the 1998 Nobel Prize in Chemistry
shared by Professor John Pople and Walter Kohn. The applications of mathematics and computation
in biology are the next big things.

A main goal in chemistry is to determine molecular structures of a molecule. In principle, this goal
can be achieved by finding the ground state N-electron wave function ¥q (71, $1, 72, S2, -*+, TN, SN)

which minimizes the functional minimization problem!!!

i (\IIH\IJ) (1.1)

where 7; € R? and s; € R are the positions and the spin coordinates of electrons; H is the Hamiltonian
operator which reads in the Born-Oppenheimer non-relativistic approximation in atomic units,
N N N 1
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where v (7;) is the external potential acting on electron ¢; and
(w19) = [ [0 (i1 P smy oo Py sn) AR (T 1, 7oy s+ T, o)
dFldSldF2d82 e d’FNdSN (13)

It has been known that in most cases, the minimization problem (1.1) is too complicated to allow
analytical solution. The advances in computer technology and computational methods have made it

possible to find approximate solutions for small molecules. The enormous progress in this area has
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been implemented in the Gaussian computer program developed by John Poplel?l. However, there
is still great need to further simplify the problem to enable the computational solutions of larger
systems. The density functional theory (DFT) developed by Walter Kohn significantly simplified the
problem[!. The breakthrough theorem on which the density functional theory is founded is actually
very simplel¥. Generally speaking, for a given function p(7), 71 € R3, there are many functions

¥ (7, 81, T2, S2, **+, TN, SN) such that

2
p(71) N/ /I\If(rl, 81, T2, 82, *** , TN, sN)| ds1diadsy - - - divdsy (1.4)

However, Professor Kohn and his coworker have found that there is a one-to-one correspondence
between function p and ¥ if there is unique external potential v (-) such that the function ¥ is the
strict minimizer to the minimization problem (1.1). Therefore, the formidable minimization problem
(1.1) with respect to the 4N-dimensional trial function ¥ can be transformed into a significantly
simplified 3-dimensional problem of trial function p (7), ¥ € R?

mpin E[p] (1.5)
where E [p] = [v(F)p(F)dFf + F [p(7)]. F is a well-defined but not explicitly known universal func-
tional.

Formally speaking, the problem of determining a molecular structure has been transformed into
a seemingly trivial problem of finding the solution to the minimization problem (1.5). The difficulty
towards applications is to construct the functional F'. It has been an open question for mathematicians
and physicists to find the explicit form of F' since 1964. Another open question is asked what the
sufficient and necessary conditions are of a general operator for the existence and uniqueness of the
functional optimization problem (1.1).

With the improvements of available approximation methods, computational DFT has become a
standard tool in estimating the ground state total energy of a system at absolute zero temperature.
In this talk, we will show how the energy minimization theory can be used to quantify the binding

affinity of molecules in the area of molecular recognition using ligand-protein docking as examples.

2 Molecular Recognition

By molecular recognition, here we refer to the specific binding of two molecules through non-
covalent intermolecular interactions. The basic non-covalent intermolecular interactions include hy-
drogen bonding, metal coordination, hydrophobic forces, van der Waals forces, pi-pi interactions,
and electrostatic effects. Molecular recognition plays an important role in biological structure and
function. For example, a DNA molecule consists of two complementary chains of nucleotides. The
antiparallel double helix structure of two polynucleotide chains is determined by the hydrogen bonds
between adenine (A) and thymine (T) and between guanine (G) and cytosine (C). The binding of
ligands to receptors regulates many biological functions such as signal transduction. Molecular recog-
nition is a key to understand biological systems and materials self-assembly. Molecular recognition
offers great potential for applications in various fields such as drug design, surface coating, catalysis,
and molecular electronics®~7.

According to thermodynamics, the Gibbs free energy change between the bounded states and the

unbounded states determines whether a guest/ligand molecule (L) most likely forms a bound complex
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(LR) with another host/receptor molecule (R). In the NVT configuration, AG = AE — TAS where
T is the temperature; AE and AS are the conformational energy and entropy change between after
and before binding, respectively. The calculation of the entropy is very difficult. In most cases, we
have to resort to approximation methods/®!.

At the zero temperature approximation, the binding affinity can be quantified by the energy
difference:

AE =E(LR)— E(L) - E(R) (2.1)

The computational task is to calculate the ground state energy of complex LR and unbounded
states L and R using the density functional theory equation (1.5). However, there are several chal-
lenges in implementing this procedure. 1) the exact universal functional F' is unknown; 2) existing
approximate forms of F ignore the London energy due to induced dipole interactions; 3) the basis set
inconsistency between the LR complex system and the isolated subsystems L and R leads to the basis
set superposition errors; 4) the convergence is very slow for large systems if they are convergent; 5)
the computational load is very demanding. Therefore a practical way is to first construct the energy
difference function and then minimize the energy function. The obtained energy from equation (1.5) is
used to parameterize the energy function. Since mathematically this is completely different from first
performing minimization and then calculating the difference as shown in (2.1), extensive parameter-
ization and correction are usually included in the empirical energy difference function. One of those

energy functions used in the popular AutoDock program!®! to study the ligand-protein recognition is

as follows.
Lo Aij By o (Cii _ Dy
AG (7, 75) = AGuaw Y ( 7~ GJ) +AGhbond E E(t) ( 7~ 18)
iy N\ T ¥ By T

+ AGue 32 8 AGuur Nur + MG Y (S, + 5,V) o(TT5R) (29)
where 7; and 7; are the atomic ]positions of guest and host moleculés; ri; is the distance between 7}
and 7j; the five AG terms, A;j, Bij, Ci; and D;; are fitting parameters; E (t) is a weight function
depending the hydrogen bond angle ¢; ¢; and g; are the atomic partial charges of guest and host
molecules; € (1;;) is the screening coefficients; Nyor is the number of sp® bonds in the ligand to account
for the conformational entropy change; S; and S; are atomic solvation parameters; V; and V; are
atomic volume; o is a distance-weighting factor.

Therefore the computational task for the molecular recognition of ligand-protein binding is to

find partners and their conformations to minimize the energy function (2.2). In the next sections, we

will point out the difficulty in this minimization problem and some progress that we have made.

3 Challenges in Optimization Methods

In the previous section, we have shown how a molecular recognition problem can be transformed
into a minimization problem. However, this is a very difficult minimization problem because 1) the
sampling space suffers from the astronomical number of combinations due to positional, orientational,
and conformational possibilities; 2) the energy function (2.2) usually has many local minima; 3) the
energy function (2.2) is discontinuous at r;; = 010

The discontinuity implies that the deterministic optimization methods which usually require
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gradient information are not applicable to our cases. Therefore random optimization methods, es-
pecially biologically inspired optimization methods are often used in the molecular recognition field.
The advantage of random search algorithms is that they are able to sample large space without the
requirement of gradient information of the energy function. The disadvantage is that there is no guar-
antee for finding the global minimum. In the AutoDock program, hybrid search methods including
global and local search aspects are implemented for finding the global minimﬁm. Genetic algorithms
are used for global searching. The Solis and Wets method!*!! is used for local searching. It has been
shown this method is efficient at finding the global minimum.

Unfortunately, due to computational uncertainty and inaccurate description of energy functions,
sometimes the conformation corresponding to the global minimum is not necessarily the true conforma-
tion corresponding to the natural binding state. This phenomenon is called false positive prediction.
By a true binding conformation, we mean those conformations whose root mean square deviation
(RMSD) of heavy atoms is less than 2 A from the experimentally determined crystal structure. When
the solution corresponding to the true conformation is excluded in the selection process, it is called
false negative prediction. In a molecular recognition study, a main goal is to avoid the false positive
predictions and save the conformations that may have been falsely excluded. In the next section,

we will demonstrate how effective selection methods can help achieve the goal in the ligand-protein

docking.

4 Novel Selection Methods and Tests

Many molecular docking programs have been developed to predict the binding conformations
and affinities of ligands associated with proteins. Among them, AutoDock is the most popular free
software'2l. As we mentioned in section 2, AutoDock aims at finding the conformation to minimize
the interaction energy function (2.2) between a ligand and a protein through exploring all possible
positions, orientations and conformations of the ligand paired with the protein. It employs the hy-
brid searching methods mentioned in section 3 to efficiently generate many binding conformations
through translational, rotational and conformational change of a ligand. It is assumed that the true
binding conformation is the one corresponding to the lowest energy among the randomly generated
conformations.

We have tried to use the AutoDock3.0.5 program to predict the ligand-protein binding confor-
mations and compare the predicted conformations with known X-ray structures of 114 non-covalent

(3] All files prepared in the Tripos mol2 format were down-

ligand-protein complexes listed on Table 1
loaded from the official UCSF Dock website (http://dock.compbio.ucsf.edu/Test_Sets/index.htm). To
meet AutoDock convention of atom types, ions such as calcium and zinc were replaced by M. Phospho-
rus, fluorine and iodine atoms were replaced by X. Electrostatic partial charges and atomic coordinates
of all atoms including hydrogen were retained. The AutoDock3.0.5 tool “addsol” was used to add sol-
vent parameters to the atoms of receptors. Rotatable bonds of ligands were automatically determined

by the tool “autotors” using flag -A +15.0 -a ~h.



¥ 38 KUANG Zhifeng, et al: Optimization Applications in Molecular Recognition 307

Table 1 The protein data bank ID code of tested 114 complexes

1A28 1COM 1FLR 10KL 1TYL 2MCP
1A6W 1COY 1HAK 1PBD 1UKZ 2PCP
1A9U 1CPS 1HDC 1PDZ 1ULB 2PHH
1ABE 1D3H 1HSL 1PHD 1WAP 2PK4
1ABF 1D4P 1HYT 1PHG 1XID 2TMN
1ACJ 1DBB 1IMB 1IPTV 1XIE 2YPI
1ACM 1DBJ 11VB 1QCF 1YDR 3CPA
1ACO 1DG5 1LAH 1QPE 2AAD 3ERD
1AI5 1DID 1LCP 1QPQ 2ACK 3GPB
1AOE 1DOG 1LDM IRNT 2ADA 3HVT
1AQW 1DR1 1LST 1ROB 2AK3 4AAH
1AZM 1IDWB 1LYL 1RT2 2CHT 4COX
1BYG 1EBG IMDR 1SNC 2CMD 4CTS
1C5C 1IETT IMLD 1SRJ 2CPP 4FBP
1C5X 1FOR IMRG 1TDB 2CTC 4LBD
1C83 1F0S IMRK 1TNG 2DBL 5ABP
1CBX 1F3D IMUP 1TNH 2GBP 5CPP
1CIL 1FGI INGP 1TNI 2HAN 6RNT
1CKP 1FKI INIS 1TNL 2LGS 7TIM

For each ligand-protein complex, the AutoDock program was performed six times to find the
lowest energy conformations using default parameters. The first search started at the mass-center of
the experimentally determined ligand. For the remaining five times, at each time a random starting
point was chosen on a spherical surface of radius 5 A, centered at the mass-center of the ligand. At
each time ten different conformations with the lower energies were retained. At the end, a total of
60 conformations were obtained. We find that in 107 out of 114 test cases, the true conformation is
among the total 60 retained predicted conformations. However, in only 72 out of 114 test cases (only a
63% success rate, see column 2 in table 2), the true conformations were found to be the conformations
of the lowest energy among the 60 predicted conformations. That means the global minimum energy
criterion produces 42 (114-72) false positive predictions and excludes 35 (107-72) true conformations.
It is crucial to reduce the number of false positive predictions and retain the true conformations for real
applications. This problem has been addressed in the clustering technique, the statistical rescoring

method and the consensus clustering method to analyze pre-generated conformations(!4~18l,

In the clustering technique, starting from the lowest energy sample, the RMSDs of the other
samples from it are calculated. If the RMSD is less than a given threshold 2 A, the sample is grouped
into the same cluster with the lowest energy sample. The procedure is repeated for the remaining
ungrouped samples whose RMSDs are beyond the given threshold until all samples are grouped into
a list of distinct clusters. The clusters are then ranked by their population. The most populated one
is called the top cluster. If a representative is chosen from each cluster, it was reported that 87%
true binding conformations for their test complexes are among the first five representatives'?). Here

we report that 88% true binding conformations for our 114 test complexes are among the lowest and
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the highest energy samples in the top cluster (column 3 in table 2). We have also found a binning
technique can help increase the prediction success rate.

In the binning technique, the RMSDs of all samples from the lowest energy sample are binned
into an interval of 0.5 A bin width. All the samples corresponding to the highest frequency belong to
the top bin. If the lowest and the highest energy samples in the top bin are selected as the candidates
of the true conformation, 86% successful prediction rate can be achieved (column 4 in table 2).

If all the four candidates selected from the top cluster and top bin are considered, 103 out of 114
test cases (90%) can find their true conformations among the four candidates (column 5 in table 2).
That means the top cluster and top bin methods can’t replace each other. Together, the successful
prediction rate increases from 63% to 90%. This is a significant improvement in the prediction success

rate.

Table 2 Success rate depends on selection methods

number of candidates 1 2 4 60
top cluster top bin

number of success cases 72 100 98 103 107

success rate 63% 88% 86% 90% 94%

1-lowest energy conformation; 2-lowest and highest energy conformation in the top group; 4-all the conforma-

tions from 2; 60-total obtained conformations

5 Conclusions

It is shown that molecular recognition can be mathematically modeled as a minimization problem.
There are many challenges in solving the minimization problem at the quantum mechanics level and the
classical pairwise potential level. Any breakthrough in the two fundamental open questions mentioned
in this paper will lead to a worldwide recognition. Applications of mathematics and computer science
in biology will lead the future research. For AutoDock, a popular molecular docking program in the
area of ligand-protein recognition, it is shown that the predicted conformation with the lowest energy
does not necessarily correspond to the natural binding state. A post selection scheme combining
the clustering technique with the binning procedure has been proposed to be a good remedy for this
shortcoming. Using this scheme, 90% natural binding states can be found among four candidates.

This selection method will add significant value to the computational drug design community.
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