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ABSTRACT

The index of the eigenvalue of the monoenergetic neutron transport operator
is studied under the assumptions of homogeneity and boundedness of the medium
and of isotropy of scattering. It is shown that all isolated real eigenvalues are
with index one.

In addition, we show that there is no nonreal eigenvalue in {A & C|ReA > —

=
[ .INTRODUCTION

We consider a homogeneous bounded medium V with a convex surface T
surrounded by vacuum. The production of neutrons by scattering and fission is
assumed to be isotropic. Let U be the surface of unit sphere in R*. r and @

denote the position vector and the direction of neutron motions, respectively, r
€ V., QeU. Let H=L*(G), G=V X U, be the usual Hilbert space with the
inner-product:

(f,g) = Jvdr Uf(r,Q) g(r,Q)dQ, f,g€H (1)
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Now our eigenvalue problem can be formulated by af=Af. Where the opera-
tor A is defined by:

Af(r,Q) =— Q - grady f(r,Q) — Zf(r,Q) + %Juf(r,ﬁ’ )dQ’ 2

with its domain D(A)={f€ H]Af€H; {(r,Q) =0 for r€ I and Q entering
direction to the body V}.

Here £ and C are positive constants,

According to the results in 1] [ 7], the spectrum 6(A) of A consists of in-
finite isolated eigenvalues with finite algebraic multiplicities accumulating at
— o0,

For any eigenvalue A of A, let N((AI—A)?)={f€e H] (AI—A)? f=0}.

Then we call the smallest integer p such that
N(QI — A)?P) = N(QAI — A)*h) (3

by the index a(X) of A.

In order to get the asymptotic expansion of the solution of the corresponding
transport equation, one should study the index of the eigenvalue of A {8]. In the
case of spherically symmetric scattering in a homogeneous sphere, R. Van Nor-
ton[ 2] showed that A has infinite real eigenvalues and all the real eigenvalues are
with index one. Although Ukai[ 1] extended the existence of infinite real eigen-
values to the arbitrary homogeneous convex body, he failed in showing they are
with index one. In section 2 of this paper. we show that all the real eigenvalues

are with index one. In section 3, we show that there is no nonreal eigenvalue of

Ain (A € C|Rer >— I},

I.INDEX OF REAL EIGENVALUES

In this section, we establish a general theorem (Theorem2. 1) which as-
sures that one can consider the index of 1 as an eigenvalue of a compact operator
instead of the index of the eigenvalue of A. Then by use of the theorem, we
show that all the real eigenvalues of A are with index one.

Define operators L, K, J in H as follows:
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Lf = — Q - grady £(r, @) — SF(r,Q) 4

Kf= Qj £(r, Q0 )dQY (5)
4]y ’

If = Lf{r,mdo' 6

with their domains D(L)=D(A), D(K)=D()=H.

It is easy to know the adjoint operators L* and K" of L and K are defined
by:

L*f= Q- gradp f(r,Q) — 2f(r, Q) (7

with its domain D(L*)={fe H|L*feH; f(r,—Q)=0 for r&€ " and Q entering
direction to the body V),

-

L G- C (R / -
K*f = &-EJ'Uf(r,Q 3dQ (8)

with its domain D(K*)=H.

It is easy to know the following four lemmas.
Lemma 2.1[7]. L is a densely defined closed linear operator, and for any com-
plex A, (AI—L)7'and (AI—L"*) ! exist and are bounded in H.

Lemma 2. 2(3](4]. Let Kx= (AI—L) 'K, then K} is a compact operator from
H to H.

Lemma 2. 3. [ Theorem10.1, p. 330, 5] The index of an eigenvalue A, of A is p

if and only if it is a pole of its resolvent operator R) of order p.

Lemma 2, 4. Asis a pole of R of order p if and only if A, is a pole of (I— (AI—
L)7IK) ! of order p.
Theorem 2. 1. If for any complex A, the unity is an eigenvalue of K) with index

1, then X is an eigenvalue of A with index 1 also.

Proof. If for any complex Ay, the unity is an eigenvalue of K) with index 1,
)
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then by the compactness of K}
0

R((I — (A — L)7'K)H) = R — (A1 — L)7K) 9

N( — (3] — L)7'K) @RI — (A — L)7'K) = H, (10)

By Lemma 2. 3 and Lemma 2. 4, in order to show the theorem, it is enough
to show that A, is a pole of (I—(AI—L) K>~} of order 1.
Let

1

B, = 5x

j<1—~ O — L)TK) 1A — a™ A, m=1,2, (11)
S

Where S is a counterclockwise circle |[A—A,] =8, in |A—A, |8, (I— (AI—
L) 'K) ! is analytic except for A,.

For any x€ER(I— (LI—L)7'K), let FQAO) = (I— QI—L)'K) 'x.

Since one easily knows that I— (I — L) 'K is bijective on the closed sub-
space R(I— (A, J—L)7'K) from (9) and (10}, A,is a removable singular point
of F(X). Therefore

B,x =0, forany x € R (I — (A,] — L) 'K). (12)

Forany fED(A) and A€ S, (I—-QAI—=L)7'K)"" &€ DC(A). Since A is

closed ,

(A — L — K)B,f = Ei‘-“ijs(“ — L —K)I — G — L)~1K)-dA

1 _ =K~ _

_ ML(I (AL — L)=TK) "1 (— A 4+ Af + (AI — L)fdA
RN P

_ szs(I (AL — L) TK) 1 (— A 4+ A,)fdA

—— B.f. (13)

Since D(A)=H, for any x€ H, there exists a sequence {f,})”D(A) such
that f,—>x. Since B, and B, are bounded, Bf,—~Bx, 1=1,2, AJ]I— A being
closed. thus Bijx€ D(A) and

(A, — L — K)B;x ==— B,x, for any x € H. (14)
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Morever, for any fED(A),
(I — (A1 — LY 'K) 7 a0 — L= KOf

= (I — Al — LYK= A 4+ A f + (IT— QA — LY TK) 1Al — L — KOf

and (I — QI — L) 'K)"'"(Al = L — K)f is analyticin I1A—2X,; <8, because A,

is a pole of (A\I—L—K)~'and (I—(AI—L)>7'K)™" with the same order. So

B, =— B,(3}] — L — K), on D(A) (15

Therefore for any x € R(I— (AJ—L)7'K), from (14),

and for any x in N(I—Q:;I—L)7'K), x€D(A), from (15)

B,x =— B,(A,] — L — K)x

== B;AJ] —L){I — QA — L)"'K)x = 0 a7

From(10),(16) and (17), B;x=0 for all x& H.

By the same process with (14), one can show that

Bw =— (AJ — A)Bo,, m = 3,4, (1)

Therefore we show A, is of order 1, That is the index of A,is 1.

Theorem 2. 2. For any real eigenvalue 3, of A, its index is 1.
Proof. Because of Theorem 2.1, it is enough to show

N(I — Kg ) DN ~ Kg )
0 a

For any fEN(I—KBO)Q, let g==(I—Kg ). If g0, we denote g
0

(r,Q)
=g {r,—Q). It is obvious by (7) and (8) that

B{_‘,g‘ —_— 1-(08_( i Klgt — 0

Let h=K*g", then h=Kg, and h=K* (%I—L*)'h,
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That is to say that h€ N(1—Kg ).
Since N(I—Kg )=R(I-—-Kz )+,

(g,h) = (g.Kg) = 0. (19)

Since {3 is real, and L and K are real operators, we can assume that g is re-
al. So

— C j- Y URYH
{ —_—ﬁ§ (r,Q')dQ' )dr,
(g Kg) 1 v( Ug r

SinceL}g(r.Q’)dQ’#O. otherwise, Kg=0 and g= (RI-L) 'Kg™ 0, (g,

K g)>>0. This is a contradiction with (19). So the index of B, is one.

T.ON COMPLEX EIGENVALUES

In this section, we show that there exists no nonreal eigenvalue in {A €
C |Red > __ Z}.
Let W be the Hilbert space consisting of the absolutely square integral func-

tion on V with a new inner product ¢, ,.?;
(9.9 = 4x| o(r) FTIr, ¢4 € W. (20)
v

Then W is a subspace of H. |
Lemma 3.1{6). If f(r)y=1CIr|), r & R® has Fourier transform in W, then

f(lr—r'1> mJ expli(r — rOkJf" (kdk, k = |ki
R;i

Where, {* (k) = é,g-rjrf(r)sinrkdr
o

Lemma 3. 2. Let I be an integral operator on W defined by,

Ip = J I(r,r )’ )dr
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exp[ — (B4 Z—~ia) |r—r"|]
[r—r' |2
If B4+ £ > 0, then for any o€ W, 970,
(a). Im{Ig,9> >0, as «a>>0.
(b). Im(I¢,¢) <0, as a<<0.
Proof. Let

Where I(r,r' )= ,» a and B are real.

exp[— B+ Z — ia)x ]
Z

X

f(x) =

If B+2>0, then

oo

f* (k) = 4—1:-TJ- expl— B+ 3 — ia}x]sinkxdx

X

4]
M__B“EIHBA-E-}-(k—a)i
T ki B+ Z— (k+ oi

Thu57

fr 2 —_
Imf* (k) =— %{E]n N (B + )%+ (k o)’
NER+ D+ k+ ot

2D

Therefore, for any ¢ € W, ¢70, by Lemma 3. 1,

Im(Igrg) = 1m4njv<p(r>J' fir — r [¢(r )dr'dr

_ 4rrJ.RSImf’ (k)dliV<p(r)exp(- irk)dr|?

From (21),
(a), Im(le,9> >0, as a=>0.
(b). Im(I(Po(P><O1 as C(<O.

Theorem 3. 1. Let ,=B—ia,a70 and 8 >>— Z. Then 3 is not an eigenvalue of
A.

Proof. If B,=B—ia, a7 0 and B>~ Z, is an eigenvalue of A, for any g& N(I—
Ks,)» g is a complex function.
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Let g=g;+igzs g1 70 g, 70, and =@, +1¢;, where
(0 = | @@ e = [ g(r0)de
U J

Note that
CC ot 110 = &
Q = 47(](301 Ly e = d‘ﬂIcp

where ] is defined in (8

Since the following equation (22) is impossible by Lemma 3. 2,
0= Im¢g,p; = (C/4m)ImIe, ¢’ (22)
therefore we complete the proof of Theorem 3. 1.
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