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Abstract

An effective method of solving the one-speed transport equation in frequency domain is
demonstrated in this paper, the so-called Padé approximation via Lanczos algorithm (PVL).
The advantage of the PVL method is that implementing the calculation process over a con-
siderably reduced model yields a pseudo-analytical expression of the transfer function over a
fairly large range of frequency. As a particular application, the dynamic transfer function of a
reactor, i.e. the neutron noise induced by a localised perturbation is calculated in one-speed
transport theory. The problem is essentially the same as that of the “detector-field-of-view’’;
studied by other authors. The PVL algorithm is demonstrated through the solution of the
problem and its advantages are described. The quantitative results show that although one-
speed theory was used, a local component was found, and thus the local-global decomposition
could be reconstructed. This shows that unlike in diffusion theory where at least two-group
theory is necessary, the local behaviour can be described already by a one-speed equation in
transport theory. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The primary purpose of this paper was to test an effective algorithm for the solu-
tion of a transport problem. This algorithm is called the ‘““Padé approximation via
Lanczos algorithm” or PVL algorithm (Feldmann and Freund, 1995). The algorithm
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is described in detail in the paper. The starting point is a finite difference discrete
ordinate scheme for the solution of the transport equation, which in the traditional
form would lead to a matrix equation of high dimensions. The high dimensionality
makes explicit methods impractical or indeed impossible to apply, and the applica-
tion of model reduction technique becomes necessary. The PVL method treats the
problem with a series expansion of the inverse of a matrix operator, and after once
calculating the individual terms of this expansion by operation on matrices of a
significantly lower dimension, the full information of the transfer function in a fairly
wide frequency range can be recovered. This way the numerical load of the algo-
rithm is considerably decreased.

As an application of the algorithm, we selected a case in reactor noise. Due to the
complexity of the dynamic problem, unlike for static cases, most problems of reactor
noise theory are treated in a one-group or two-group diffusion approach (Behsinger
et al., 1977; Dam, 1977, Hagen et al., 1992; Kosaly, 1975). There are only a few
reported cases of noise calculations with transport theory (Analytis, 1980, 1983;
Kosaly and Sanchez, 1985). Analytis gave a solution in an infinite medium with
analytical methods, whereas Kosaly and Sanchez treated a transport problem
numerically. In both cases the authors used multigroup theory, and, not surpris-
ingly, found the existence of the local component.

It is, however, natural to expect that the local component of the noise should exist
already in one-speed transport theory. It is well-known that in this approach the flux
in an infinite subcritical system by a point source contains an asymptotic and a
transient term (Bell and Glasstone, 1970). The asymptotic part is very similar to the
solution with one-group diffusion theory, whereas the transient term is localised
around the source. It is also known that there is a close similarity between the
equations for the static flux induced by a point source in a subcritical system and
that of the noise induced by a point perturbation in a critical system. Based on this
analogy alone, the expectation that local behaviour should be seen already in one-
speed transport theory is justified.

One can also argue in an alternative way. The local component of neutron noise
was found first in the classic paper by Weinberg and Schweinler (1948). The treat-
ment used there was diffusion theory with a slowing-down kernel. Because of the
slowing-down kernel, such a theory is analogous to the transport equation in that it
is not a pure differential equation, rather an integro-differential one. As was also
discussed in Pazsit (1981), continuous slowing down theory is equivalent with multi-
group theory with an infinite number of groups, and many-group and even two-
group theory are simplifications of the continuous slowing down case. As soon as
there are at least two groups, a local component occurs whose characters do not
change much with the introduction of more groups, or even with the transition to
slowing-down theory. So there are natural similarities between the extension of the
one-group diffusion theory to many-group diffusion theory on one hand, and to
one-speed transport theory (i.e. an integro-differential equation) on the other.

The numerical results obtained in this work, which are also used for the illustra-
tion of the PVL algorithm, clearly show the appearance of a local component.
Similarly to the local component found in two-group diffusion theory, the local term
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found here depends on the frequency much weaker than the global term, and dominates
at higher frequencies. Moreover, it appears at lower frequencies in larger systems
rather than in small systems, completely in accordance with expectations based on
physical grounds attributed to the local component known from earlier works.

2. Description of the physical problem

Consider a homogeneous critical bare slab reactor of thickness 2¢ Under the
assumption of isotropic scattering, the neutron balance can be described by the fol-
lowing transport equation (Bell and Glasstone, 1970):

9 > (!
- 9(x 1) + T, w = J $(x, 1)dp’ (1)
X 2 -1

d(Fa, F1) =0, 1>p=0 2

Here 3, = X, + X is the total cross-section, and c¢ is the average number of sec-
ondaries, as usual.

We shall now calculate the variations of the signal of a point detector due to
localised fluctuations in the absorption cross-section. That is, the variations in the
signal of the detector are assumed to arise from small changes of the macroscopic
absorption cross-section:

Yo = T+ y(S(x — xp)c‘SEa(t) 3)

where y is the so-called Galanin’s constant. x, is the perturbation position. For
simplicity of notations, we assume that y = 1 in the following.
The changes result in small fluctuations of the following quantities:

Px, ) = ¢(x, w) + 8p(x, w, 1) “4
C(x) = C(x)+8C(x,1) (5)
¢ = c(t)=c+8c(t) (6)

where the last relationship stands for the fluctuation of the criticality factor.

As usual we shall use linear theory which is obtained by neglecting second-order
terms, i.e. neglection of the product of fluctuating quantities. This also means that in
the time-dependent case, on the right hand side of (1), (and also in the correspond-
ing expression for the delayed neutron precursors), to the first order, ¢(7)2(¢) can be
replaced by ¢X;. Hence the kinetic equations for the fluctuations can be written as:
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19 9 1% (' ' Ada!
778¢(X7 M, t) = _M78¢(X7 M, Z) - 21‘8¢(X’ W, Z) + wj (S(P(X, n, Z)d,lL
v ot ax 2 -1

+ A8C(x, 1) — 8(x - xp)SEa(t)q)(x, W) (7

1

Dscnn=¢ EfJ Sp(x, 1, ydu’ — 28C(x, 1) (8)
ot 2 ),
Sp(ta, Fu, 1) =0, 1>p=0 )

We shall calculate the neutron noise in the reactor, which will be a function of
both the perturbation position x, and the detection coordinate xp. Formally (van
Dam, 1976), one can assume that there is a point detector located at x = xp repre-
sented by

Yp(x) = Zpd(x — xp) (10)

where Xp is the effective absorption cross-section of the detector, dimensionsless
in this 1-D model. Then the detector response SR to the source —§(x —xp) x
8%, ()¢(x, u) can be written as

a

1
S8R(xp, xp, t) = J J 1ED(x)E)‘(;S(x, w, ydxdu, (11)

—a

or

1
5R(xD, Xp, t) = EDJ 3¢(xp, w, Hdu. (12)
-1

For simplicity of notations, we assume that Xp = 1 in the following.
As usual, the time derivative and the equation for the delayed neutron precursors
are eliminated by temporal Fourier transform of Egs. (7) and (8). Setting

Sp(x, u, t = —00)=0; 6C(x,t > —o0)=0,

the Fourier transform

eoe]

F(s) = J e S'f(ndt (13)

—00

of Egs. (7) and (8) leads to

ad 1 - Et ! ’ ’
S6¢(xv M, S) = _UMaS(b()C’ M, S) - V2t5¢(xv M, S) + C(fﬂ)vj 18¢(X, M, s)dl‘L

+ vASC(x, s) — v8(x — xp)(SZa(s)qb(x, ) (14)
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1
$8C(x, ) = C“’;E’J Sp(x, 1, s)du — A8C(x, 5) (15)
—1

where s = iw. The boundary conditions become

dp(Ea, Fu,5) =0, 1>pu=0 (16)

The response characteristics of the detector are then summarized in terms of the
transfer function:

B SR(xp, xp, 5)

G(xD, Xps s) = 5T,0) 17

To a constant, this is equivalent to the Green’s function (transfer function) of the
system. Keeping x, constant, the dependence of G(xD, Xp, s) on xp yields the
detector field-of-view. As mentioned in the introduction, this function has been so
far investigated in the framework of different homogeneous multi-group diffusion-
theory and transport-theory models. In the transport theory calculations, an infinite
or a semi-infinite system was assumed, but no finite systems such as a slab with two
free boundaries were investigated. As mentioned by Zweifel (1967), no closed form
solutions to (14) involving two interfaces has been obtained yet, thus in general
practical numerical solutions have been sought instead. In the method presented
here we obtain a quasi-analytical solution.

From the physical point of view, one novelty of the present paper is the one-speed
transport theory treatment of the noise equations and the existence of a local com-
ponent. It will be seen that one-group homogeneous transport theory is sufficient to
reconstruct the two components (local and global) of the detector response.

From the numerical point of view, the algorithm has a considerable advantage
when it comes to calculations including frequency dependence. In noise calculations,
the transfer function often needs to be calculated for several frequencies between 2
and 100 Hz, which may be rather time-consuming with traditional methods. We are
going to demonstrate that the full information of the transfer function or detector
field-of-view can be recovered through solving Eq. (14) for one fixed value of the
s(s = iw) by use of the Padé approximation via Lanczos algorithm.

3. Discrete mathematical model

The calculational procedure starts with a discretisation with respect to the spatial
and the angular variables, i.e. use a finite difference discrete ordinates method as
described in Bell and Glasstone (1970). In order to use symmetry to reduce the size
of the discrete mathematical model, we suppose that the perturbation takes place at
the centre of the system, i.e. x, = 0. This restriction is naturally not necessary and
can be dropped easily, but our purpose here is only demonstration and this is why
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we treat a simplified case. Notation on x, will be dropped in the continuation and
xp will be re-denoted as x. Due to symmetry, the following relationships hold:

Sp(—x, i, 8) = Sp(x, —, )
8C(x,s) =8C(—x, s) (18)

The fact that the boundary conditions are specified over half of the range of the
angular variable u will be made use of when choosing the form of discretisation, see
(23) and (24).

To avoid handling a Dirac-delta function explicitly in Eq. (3), we use the following
representation of Dirac-delta function (Morse and Feshbach, 1953)

8(x) = limA(z, x) (19)
—> 0

where A(f,x) =1 [52%2]

Concretely, we handled the following point-like perturbation

A(x) = 1 |:108:| (20)

| 10716 4+ X2

Because of the symmetry properties mentioned above, we discretize the integral by
choosing an even-order Gauss quadrature set of directions {M]} and weights,
{wj}.i=1,2,...,2N, such that

Wi = —ponyi—; and ;= wini1-; (21)

Then we discretize the spatial variable x by choosing the 2K+ 2 mesh points as

—a=Xx) <X <...<xg<0, h=xr—x—, k=1,...,.K (22)

and 0 < —xg... < —Xx] < —Xg = a.
The derivative terms are then approximated by finite difference such as

8 ~ 8¢(xk+ls I’Lja S) - 8¢(Xk, /.L], S)
PGS e (23)
and
8 ; 1) ;
5¢<Xk+g, ", S) - 800xkr1, 1, S)2+ ®(xk. 1, 5) 24

where x; ;1 = % The same approximate method is used for §C(x, s). Then we
introduce a number of notations as follows:
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2

Jy =

8 = 8(xx, s 8); 8Cx = 8C(xx, 5);

D(x, 1) AL, xk) + (X1, ) AL, Xps1);

¢ P
(k+1/2)j = 5

80, = (51), .., 8dusny) s 8C=(8Ci, ..., 8Cus)"s ;

T ;=(0,0,....,0,...,0,...,0,0)7;
L — . J s Vs » ) » s s Vs ’

X =(d,...,8by, 80 ;

b= (®,....0y, 0 1=(l,....1y,07;
Ml 1 00 0 0
Ml 1 1 0 0 0
M= . o Mi=[0 11 0 0|
Ml 0 0 0 1 1
[ 0 ... 0 0o ]
hy
L e A R | 0
hy hy
Mii=\o = oo o |
o
VI VI
0 0 0 —
L hger higr
[w; 0 0 0 0 0 0 0 o o
w; w 0 0 0 0 0 w;j w 0
Wli=|0 o o 0 0 |; W2; = ;
w; W 0 0 0
| 0 0 0 w;  ; w; 0 ... 0 0

H=Hl+ H2
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_ v
M2, + M1 TVMI
—va
i
Hl = 2 :
M2y + Wy M1 ...
—va
M2y + M1 TVMI
L 0 0 A
_Cl(Wll + W21) Cl(W12+ W22) C](W1N+ W2N) 0
Cl(W11+ W21) C](W12+ W22) Cl(WlN-I- W2N) 0
H2 = “ e 3
Cl(Wll + W2y) C](le—l- W22) C](WIN—I- W2y) 0
_Cz(Wll + W21) C2(W12+ sz) C2(W1N+ W2N) 0
With the above notations, the discrete problem can be written as
tMX = —HX +bsx, (25)
SR =1"X (26)
Thus the transfer function Eq. (17) becomes
G(x) =1"(H+ M) b (27)

Assuming that M~'H is diagonalizable, or, M 'H=SAS ' A =
diag(41, ..., A+1)ek+1)), where 2 are the eigenvalues of M~'H and the columns of
S are the corresponding eigenvectors, we obtain

» (N+1)(2K+1) o
G =V"(M'H+7) M'b=1VSUA+0'S"'M b= > tH
=T =z i=1 !

(28)

where y; and z; are the components of the vectors y and z.

However the numerical computation of all eigenvectors and eigenvalues of the
matrix M~'H becomes prohibitively expensive as soon as its size reaches a few
hundreds, which is the case in all practical situations. Therefore the only practical
way of solution is through an approximation. In the following we use the Padé
approximation via Lanczos algorithm (PVL) (Feldmann and Freund, 1995) to
evaluate Eq. (27).
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4. Padé approximation

Let 79 be an arbitrary fixed complex number such that H + toM is non-singular.
Using a shift of variables as 7 = o + 7y and setting

A=—(H+ rOM)_lM; r= (roM)_lb; (29)
we can rewrite Eq. (27) as
G(ro+a) =17(I — ad)'r (30)

If the spectral radius y(aA) is less than unity, the Neumann series expansion can
be used to get

Gl +a)=1"I+ad+ 4>+ .. Jr =Y mge, (31)
i=0
where m; =174’r, i=0,1,..., are called the moments of the frequency-response

function . The purpose is to truncate the expansion (31) after a relatively low num-
ber of terms.

The truncation G, of 2¢ terms of Eq. (31) is called by the gth Padé approximation.
In order to implement the gth Padé approximation, the task is to compute the
leading 2¢ moments mq, my, ..., my,—1 of G. Eq. (31) itself can be used to calculate
the moments by the recursive solution of the linear systems

(H + toM)uy = —Muy_, (32)

with the initial vector

(H + toM)uo = b, (33)

where uy =r,u; = Ar, ..., us;1 = A*~'r. This is the so-called asymptotic wave-
form evaluation algorithm (AWE) based on Padé approximation (Gallivan et al.,
1994). In AWE, the severe numerical problem is that ux = Ar converges quickly to
the eigenvector associated with the eigenvalue with the largest absolute value and
thus only the information corresponding to this eigenvalue can be used. On the
other hand, in view of (28), the function G(7) to be approximated clearly depends on
all the eigenvalues of A. Therefore, in order to recover information about more than
one eigenvalue, a better algorithm or the PVL algorithm was proposed in Feldmann
and Freund (1995). The basic idea can be summarized as follows.

First, one calculates a tridiagonal matrix 7, via the Lanczos process from such
that

AV, =V, T, +[0,...,0,v51]0441, (34
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where V, = [vi, ..., v4—1, v,] is a matrix of dimension (N + 1)K + 1) x ¢ and, T is
a tridiagonal matrix of dimension ¢, and p,41 is a number, and v, is a vector of
size (N + 1)2K + 1).

From (34), one can show that

Table 1
Basic data used for our calculation, v=2200 m/s, 8=0.00625, A=0.0767 s~!
Theoretical model Practical model
Thickness of the slab 2a (cm) 6 200
Total cross section £; (1/cm) 1 0.50
Neutron secondaries per collision 1.4025 1.0003
q=9
10° ¢ . ——
— — 2 mfp from perturbation
-—-- 1 mfp from perturbation
r —— 0.5 mfp from perturbation

10

10

Amplitude

10

10 ¢

1 0 1 1 4
107 107 10° 10° 10
Frequency, Rad/s

Fig. 1. Amplitudes of the transfer functions for a 6 mfp thickness slab reactor while the detector is at
three different positions.
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mp = (lTr)(elTT;el), i=0,1,...,2¢—1., (35)
where, e, = (1,0, ...,0)"e R?, and thus
29 ) 29 _ |
Gy(to+a) = Zmia’ = (lTr)ZelT(aTq)lel = ("r)ef (1 —aT,) e (36)
i=0 i=0

Then using the eigen decomposition

T, = Sydiag(i1. 72, ..., Ag)S," (37

g=12
10 9 T T T T T

— — 10 mfp from perturbation
-—-- 5 mfp from perturbation
—— 2.5 mfp from perturbation

[0}
he)
2
2
£ \
< \
107°} \ E
\
\
AN
\ ~
= N
6 \
10 F \ o
\ ]
M
-7
10 1 1 1
107 1072 10° 10° 10*

Frequency, Rad/s

Fig. 2. Amplitudes of the transfer functions for a 200 cm thickness slab reactor while the detector is at
three different positions.
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one can derive the Padé approximant G, from (36) as:

MV

q
Gy(ro + ) = (lTr) 1 —al
_ j

=1

(38)

(39)

Apparently the complexity of the calculation has been simplified considerably as
compared to the direct solution of (27) because the size of T, is much smaller than A
as we will see in the next Section where numerical results will be given. The more
important thing is that we only need to implement the calculation process once for a
fixed shift 7y, after which we can obtain the pseudo-analytical expression of the

transfer function G.

Frequency 0.002 rad/s
57
5.65
()]
©
2
5 56
g —— Exact solution
,,,,, q=6
5.55 ‘= Q=7
- - g=8
5.5
-0.4 -0.2 0 02 04 06
Detector position Xo mfp
Frequency 20 rad/s
0.165
0.16

Amplitude
o©
o
5

—— Exact solution
..... q=6
0.15 —. q=7
- - qg=8

N\

0.145
-0.4
Detector position Xg» mfp

-0.2 0 02 04 06

Frequency 0.02 rad/s
0.6
0.595
o 059
e
2
5 0.585
E —— Exact solution
os8tr /| q=6
c— g7
0.575 — =8
\J
-04 -0.2 0 02 04 06
Detector position Xo mfp
Frequency 100 rad/s
0.165
0.16

Amplitude
o
o
(4]

—— Exact solution
..... q=6

0.15 — q=7
- - g=8

0.145 N

-0.2 0 02 04 06
Detector position Xo mfp

-0.4

Fig. 3. The local-global decomposition of the noise induced by a central perturbation at various fre-

quencies for a 6 mfp thickness reactor.
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5. Numerical results

The numerical computation was performed for two different critical systems. One
is a small system, with size six mean free paths, and the other being a “‘realistic”
model with system size equal to 100 mfp. The data used were listed in Table 1. For
the small system, a total of 2K+ 2 =102 mesh points, and N =24 positive directions
were used. Thus the matrix size is (N+1)(2K+ 1)=2525. For the large system, a
total of 2K+ 2 =212 mesh points, and N =14 positive directions were used. Thus the
matrix size is (N + 1)(2K+ 1)=3165. In both cases, two step lengths were used. Near
the local perturbation, the step length about 0.001 mfp was chosen. In both cases,
the shift 7g = 0.01 was used.

The calculated transfer functions by use of (39) are shown in Figs. 1 and 2 for the
small system and the large system, respectively, as functions of the frequency. The
frequency behaviour of the absolute value of the transfer function is similar to that
calculated in diffusion theory, i.e. it diverges at low frequencies, is constant at the so-
called plateau frequencies, and decreases again above the plateau frequency.

It is maybe somewhat more illuminating to investigate the space dependence of
the transfer function for a few selected frequencies. The space dependence of the

x10™*  Frequency 0.002 rad/s x10°  Frequency 0.02 rad/s
2.27 4.2
2.26 4
[} (]
E E
£225 ) £38 :
£ —— Exact solution £ — Exact solution
..... q=10 <o g=10
224 c—-g=11 3.6 -—-- g=11
- - gq=12 — g=12
2.2 \ I 3.4
:-34 -2 0 2 4 -4 -2 0 2 4
Detector position X5 mfp Detector position x,, mfp
x107° Frequency 20 rad/s x107° Frequency 100 rad/s
2.4 2.4
22 2.2
2 2
()] ()
E 2
=18 518
£ —— Exact solution £ —— Exact solution
16t S |- q=10 1.6 4P IR q=10
= g=11 c—-g=11
1.4 - - g=12 1.4 - - g=12
1.2 \I 1.2 \l
-4 -2 0 2 4 -4 -2 0 2 4
Detector position X5 mfp Detector position X5 mfp

Fig. 4. The local-global decomposition of the noise induced by a central perturbation at various fre-
quencies for a 200 cm thickness reactor.
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noise induced by the perturbation (i.e. the transfer function or detector field-of-view
G) was calculated at four different frequencies by the use of (25)—(27) directly (we
shall call it the exact solution) and (39), respectively. The comparison is shown in
Figs. 3 and 4 for the small system and the large system, respectively, in the close
vicinity of the perturbation. As the figures show, the approximate solutions fit the
exact solutions very well. The saving in the numerical work is obvious if we compare
it with the dimensionality of the matrix problem listed above.

The spatial behaviour of the solutions shows a definite resemblance to two-group
diffusion theory results that have been obtained in the past. One can clearly discern
a global and a local component. The global component is point kinetic at the lowest
frequency, and starts to deviate from the point kinetic behaviour with increasing
frequencies. This is in a very good agreement with earlier results. In addition, how-
ever, a local component occurs. This component appears to be independent of the
frequency, in contrast to the global component. At the lowest frequency, the local
component is suppressed by the global one, but it gradually becomes more and more
dominating with increasing frequencies. This behaviour is completely in accordance
with the properties of the local-global decomposition as known from two-group
diffusion theory.

Frequency 0.002 rad/s Frequency 0.02 rad/s
1 0
10 10
[} [}
E E
3 5
E —— Exact solution E —— Exact solution
.......... q=6
— q=7 = q=7
- - q=8 — q=8
10° 107"
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Detector position X mfp Detector position X mfp
Frequency 20 rad/s Frequency 100 rad/s
0 0
10 10
[0} [0}
E _1 g —1
310 310
;C_ —— Exact solution g —— Exact solution
S—q=7 - g=
- — q=8 - - q=8
10° 107
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Detector position Xy mfp Detector position X mfp

Fig. 5. The existence of the boundary layer of the noise at various frequencies for a 6 mfp thickness slab
reactor.
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Frequency 0.002 rad/s Frequency 0.02 rad/s
-3 -4
10 10
-5
[} o 10
2 E
£ —— Exact solution € —  Exact solution
< <, -6
10 107 |
,_..q=11 . q=11
- - g=12 q=12
107 107
-50 0 50 -50 0 50
Detector position Xo mfp Detector position X mfp
Frequency 20 rad/s Frequency 100 rad/s
-4 -4
10 10
-6 -6
o 10 o 10
2 2
g g -
— Exact solution ~ —— Exact solution
<10 <t |
§ -—-g=11
= g=M1 q
- — g=12 - - g=12
10—10 10~10
-50 0 50 -50 0 50
Detector position Xpr mfp Detector position X mfp

Fig. 6. The existence of the boundary layer of the noise at various frequencies for a 100 mfp thickness
slab reactor.

The behaviour of the global component is also compatible with expectations and
previous experience. In the larger system the space dependence of the global com-
ponent deviates from point Kinetics already at low frequencies. At high frequency, it
becomes quite localised around the perturbation.

Apart from the appearance of the local component, there is one more property of
the present transport theory solution which is absent in the diffusion theory solu-
tions. It concerns the existence of a boundary layer close to the system boundary.
This can be seen in Figs. 5 and 6, which show the detector-field-of view of the two
systems in logarithmic scale. One can easily see the occurrence of a boundary layer
in the solution, especially in the larger system. This phenomenon is well known in
static calculations, but has not yet been shown in dynamic transport theory calcu-
lations.

6. Discussion and conclusions

The main purpose of this paper originally was to test and demonstrate the per-
formance of a numerical scheme, the Padé approximation via Lanczos algorithm
(PVL) method in solving a transport problem. The numerical results show that the
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PVL algorithm has excellent efficiency and stability and thus it can be used for sol-
ving certain transport problems.

However, the concrete application which we selected has yielded some interesting
new results in space-dependent reactor dynamics. Namely, the noise induced by a
localised perturbation of variable strength, which is equivalent with the Green’s
function of the general noise problem, was calculated in one-group transport theory.
It was found that the solution obtained shows properties which agree with experi-
ment, but whose reconstruction requires an energy-dependent treatment, at least
two-group theory, if diffusion theory is used. Our solution contains both a global
and a local noise component. As is well-known, the local component cannot be
obtained in one-group diffusion theory. Our results show that a local component
can be obtained already at the level of one-speed transport theory.

The deficiency of the one-group diffusion theory in yielding a local component is a
result of the fact that in n-group theory there are n spatial eigenvalues (relaxation
constants). Thus in 1-group theory there is only one spatial eigenvalue, which is the
static buckling with a slow spatial relaxation. Two- and more group theory, and
indeed also continuous slowing-down theory (Pazsit, 1981) yields, in addition to the
fundamental mode, also higher spatial eigenvalues that are all much larger in abso-
lute value than that of the global component.

In transport theory one obtains more than one spatial eigenvalues already in a one-
group treatment. For example with a static source in an infinite medium one has one
discrete eigenvalue which describes the asymptotic behaviour, and a continuous spec-
trum which describes the transient behaviour close to the source (Bell and Glasstone,
1970). It is the largest value of the discretised form of this continuous spectrum which
we found in our numerical work and which corresponds to the local component.

The transport theory solution in addition also exhibits a boundary layer. This is
another physical novelty of the solution presented here. For the description of a
boundary layer, it is not sufficient to use two-group diffusion theory, due to the
obvious difficulties of diffusion theory to treat free surfaces. Two-group diffusion
theory can reconstruct a “boundary layer” at the boundary of the core in a reflected
reactor (the reflector peak) but not the boundary layer at a free surface. The trans-
port solution given here, one the other hand, exhibits also the boundary layer.

It is of course and interesting question how the local component of one-group
transport theory and the local component of two-group diffusion theory are related
to each other. It was shown for instance in an earlier paper (Pazsit 1981) that the
local and global components of two-group diffusion theory and diffusion theory
with a continuous slowing-down kernel are numerically very similar, but the origin
of the local component had different interpretations in the two approaches. The
relationship between two-group diffusion theory and one-group transport theory is
the subject of further investigation and the results will be reported in future work.
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