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The general backward theory of neutron fluctuations
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Summary. — The Feynman-alpha and Rossi-alpha formulae are derived analyti-
cally for subcritical systems driven by a multiple emission source, i.e. one that emits
several neutrons on each source emission event. The prime example of such sources
is a spallation source, which will be used in future accelerator driven subcritical sys-
tems (ADS) such as the energy amplifier. Such formulae for ADS have been derived
recently but in simpler neutronic models. In this paper six groups of delayed neutron
precursors are taken into account, and the full joint statistics of the prompt and all
delayed groups is included. Thus the present results are generalisations of earlier
ones. The involved problems that are encountered are solved with a combination of
effective analytical techniques and symbolic algebra codes.

PACS 05.40 – Fluctuation phenomena, random processes, noise and Brownian mo-
tion.
PACS 02.50.Ey – Stochastic processes.
PACS 25.40.Sc – Spallation reactions.
PACS 28.20 – Neutron physics.

1. – Introduction

Fluctuations in the number of neutrons or in the number of detector counts in a
subcritical reactor with a source have long been used to determine various reactor pa-
rameters [1,2]. Although in principle such methods are capable to determine both nuclear
parameters and subcritical reactivity, it is the latter, i.e. measuring the subcritical reac-
tivity that has been by far the most important application.

Two fluctuation-based methods, the Feynman-alpha or variance-to-mean, and the
Rossi-alpha or covariance method have been used extensively. As their name already
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suggests, they are both based on the measurement of the second moment of the statistics
of the detector counts. In the Feynman method, one determines the relative variance

σ2
z(t)

〈Z(t)〉(1)

as a function of the measurement time t. Here, Z(t) is the detector count in (0, t),
a random variable, 〈Z(t)〉 is its expected value and σ2

z(t) its variance. With the use
of the theory of linear Markov processes (master equations), used also in this paper,
the following expression, the so-called Feynman-alpha formula, has been derived for the
variance-to-mean, refs. [3-5]:

σ2
Z

〈Z〉 = 1 + ε
6∑

i=0

Ai

(
1 − 1 − e−αit

αit

)
.(2)

In the above, ε is the detection efficiency. The most important part of the sum is the
prompt part, i.e. i = 0, for which one has

α0 ≈ β − ρ

Λ
, ρ =

k − 1
k

, αi � α0; i ≥ 1(3)

and

A0 =
〈ν(ν − 1)〉

ν̄2

1
(β − ρ)2

≡ Dν

(β − ρ)2
,(4)

where β is the delayed neutron fraction, ρ the subcritical reactivity, Λ the prompt neutron
generation time. The quantities ν̄, 〈ν(ν −1)〉 and Dν are related to the various moments
of the number distribution of the fission neutrons; for their definitions we refer to the
Nomenclature in the appendix. For simplicity, we drop the bar from ν̄ in the following
text. We only note here that eq. (2) is derived with the assumption of a Poisson source,
i.e. the probability of emitting one neutron in dt is S dt.

The physical interpretation of (2) is as follows. If all neutrons were statistically
independent, as, e.g., those emitted by a radioactive source, the statistics would be
Poisson and the relative variance equal to unity. However, in a multiplying medium,
each neutron will induce a chain, leading to the generation of a total on 1

1−k neutrons in
an infinite system. All neutrons in such a chain are correlated due to the fact that they
have a common ancestor. Due to positive correlations, the variance will be higher than
Poisson. It is this part of the variance-to-mean which exceeds unity, where the useful
information on the system is found. However, each individual chain will die out in a
subcritical reactor, the die-out being determined by the time constants αi; this is why
the relative variance saturates.

The Rossi-alpha method is based on the measurement of the covariance function of
the detector counts in infinitesimal time intervals dt around times t and t + τ , defined as

P (τ) dτ =
Czz(τ)
〈Z〉 =

〈Z(t + τ)Z(t)〉 − 〈Z(t + τ)〉〈Z(t)〉
〈Z〉 .(5)
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With similar techniques as in the foregoing case (master equations) an analytical expres-
sion for the Rossi-alpha formula can be derived in the form

P (τ) dτ = ε dτ

6∑
i=0

Cie
−αiτ .(6)

Here the time constants αi are the same as in (2) and (3), and the constants Ci similar to
Ai in (4). The interpretation of (6) is also similar to that of the Feynman-alpha formula:
if all neutrons were independent, the covariance would be zero. Due to the branching
(fission) and corresponding generating of correlations, the covariance is larger than zero,
but it dies out exponentially with the same time constants as the ones that appear in
the Feynman formula.

The theory behind such fluctuation processes received a renewed interest recently with
the advent of the so-called accelerator driven systems (ADS). Such systems, intended to
be used either for energy production or transuranium transmutation, will use a subcritical
core with a strong spallation source [6-13]. Since such systems will be run in a subcritical
mode, it will be important to measure, and continuously monitor, the subcriticality of the
system. Based on the experience with traditional systems, the Feynman- and Rossi-alpha
methods appear as suitable candidates for such purposes.

However, there is an important difference between the traditional systems and a future
ADS. Namely, the neutron source in an ADS, usually assumed to be a spallation source,
has statistical properties that are different from those of the traditionally used radioactive
sources. Radioactive sources have simple Poisson statistics, where all source neutrons are
independent. In the derivation of the Feynman- and Rossi-alpha formulae for traditional
systems, this simple source statistics was assumed. In a spallation source, all neutrons
arising from the spallation reactions of one primary projectile, usually a proton, are
correlated, and thus the source statistics is not Poisson, rather it is a compound Poisson
distribution [14]. Although the spallation neutrons give rise to by one projectile are
generated in an intra- or inter-nuclear cascade, and are thus born within a finite time
span and not simultaneously, this time span is very short (a few ns) compared to the
generation time of fission neutrons in the fission chain, and is even shorter than the
lifetime of the prompt neutron chain [15, 16]. The arrival times of the projectile (e.g., a
proton) are assumed to obey Poisson statistics with a time constant that is much larger
than the cascade generation time in the target. Thus, to a good approximation, one
can assume that the source neutrons obey a compound Poisson statistics, at least in
conceptual studies like the present one. In other words, it means that there will exist
correlations between the neutrons that were generated, in contrast to the traditional
case, not in the fission chain but in the external source. It is necessary to investigate the
effect of such correlations on the Feynman- and Rossi-alpha formulas.

The formal task is therefore to re-derive the Feynman- and Rossi-alpha formulas with
the assumption of compound Poisson source statistics. This has actually been done re-
cently by several authors [17-22]. However, in all works at most one average delayed
neutron group was assumed (in some papers the delayed neutrons were not even explic-
itly taken into account). The recent work consists in the generalisation of the method to
the case when six different delayed neutron groups are distinguished. Besides the value
of the results themselves, some novel mathematical methods were employed in this paper
in order to arrive at the present results. First, analytical methods were used to derive
the solution of the single-particle–induced distributions in a compact form. Second, a
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symbolic algebra code (Mathematica) was used to evaluate the integral of these distribu-
tions to arrive to the moments of the source-induced cascade. We also believe that the
results have a general reference value. The fact is that details of the original derivations
of the Feynman- and Rossi-alpha formulae are not available in journal publications or
in monographs. Also, the explicit exact values of the various factors appearing in the
Feynman- and Rossi-alpha formulae are not available in the most common references
such as [2], only simplified (approximate) values. This paper contains the most com-
plete list of formulae with an explicit use of six delayed neutron groups as well as full
prompt-prompt, prompt-delayed and delayed-delayed correlations and the multiplicity
of the source.

2. – General principles

As usual in all works that aim to obtain analytical solutions, the space and energy
dependence of the neutronic model will be kept simple. We shall use an infinite homo-
geneous reactor which permits the use of point kinetics, i.e. a space-independent theory.
An energy-independent, i.e. one-group model will be used. The limitations of the latter
for spallation-source–induced neutron fluctuations were discussed in [20]. The detector
is assumed to be spatially homogeneous and infinite and its finite volume will be concep-
tually simulated by a detector efficiency factor. On the other hand, the nuclear model of
the fission chain will be quite detailed. Not only the correlations between prompt neu-
trons, but prompt-delayed and delayed-delayed correlations will also be allowed. With
all likelihood, these latter correlations are negligible in realistic cases, and thus they were
neglected in most of the previous work. Here we treat them explicitly. The other aspect,
mentioned above, is the fact that 6 delayed neutron groups will be taken into account.

Both the source and the medium are assumed to be stationary, thus the arising
fluctuations in the number of neutrons and in the detector counts will be stationary too.
This means that the expected value and the variance of the number of neutrons in the
system is constant, that of the detector counts between t and t − T is independent of
t, and the joint expected value of having one count in an infinitesimal time around t
and one around t + τ depends only on τ . Regarding the source statistics, stationarity
means that the distribution of source emission events is a Poisson process with constant
(time-independent) parameter. That is, the probability of one source emission in (t, dt)
is equal to

S dt(7)

where S is constant in both space and time. On each emission a random number of
neutrons is released with a probability distribution

pq(n);
∞∑

n=0

pq(n) = 1.(8)

Calculation of the above moments and correlations leading to the Feynman and Rossi
formulae goes in two stages. First, the statistics of the single-particle–induced cascade
need to be determined. Since we will only be dealing with second moments at most, we
need to calculate at most the second-order or two-point distribution

P
(
N1, Z1, t; N2, Z2, t + τ

)
,(9)
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which is the probability of having N1 neutrons in the system at time t and N2 neutrons
at time t + τ , and having had Z1 and Z2 detector counts in some time intervals T or
dt preceding t and t + τ , respectively, due to one single initial neutron at time zero. As
we shall see soon, in order to derive a master equation for this distribution, the delayed
neutrons must also accounted for explicitly. However, at this point we only want to relate
the single-particle– and source–induced distributions, respectively, in which relationship
the delayed neutron precursors do not appear. Hence only the above simpler distribution
needs to be considered. For obvious reasons, the distribution (9) is not stationary, i.e.
it depends on both t and τ separately. For its generating function a backward-type (or
rather a mixed but predominantly backward-type) master equation will be derived and
solved for the first two moments both in the one-time (Feynman-alpha) and the two-time
(Rossi-alpha) case.

In the second step, from this distribution, the source-induced stationary distribution
needs to be determined. This is achieved by the generalised Bartlett formula, which gives
a relationship between the single-particle–induced distributions (9) and the stationary
source-induced distribution

P̃
(
N1, Z1, t; N2, Z2, t + τ

)
.(10)

The interpretation of this distribution is the same as that of (9) above, with the difference
that the cascade was induced by switching on the source at t = 0 with the further initial
condition of having no neutrons in the system for t ≤ 0. The stationary distribution and
its moments can be determined by calculating the limit of (10) for t → ∞.

Introducing the generating functions G and G̃ as

G
(
x1, z1, t; x2, z2, t + τ

)
=
∑
N1

∑
Z1

∑
N2

∑
Z2

xN1
1 zZ1

1 xN2
2 zZ2

2 P
(
N1, Z1, t; N2, Z2, t + τ

)
(11)

and similarly for G̃, the Bartlett formula for multiple emission sources in the stationary
(i.e. asymptotic) case can be written as [20]

G̃
(
x1, z1, x2, z2, τ

)
= lim

t→∞ G̃
(
x1, z1, t; x2, z2, t + τ

)
=(12)

= exp

[
S

∫ ∞

0

dt

[∑
n

pq(n)Gn
(
x1, z1, t; x2, z2, t + τ

)
− 1

]]
.

This equation will be used below when one- and two-point second moments of the sta-
tionary distributions will be calculated. It will be used to relate the first and second
moments of the source-induced distribution to those of the single-particle–induced dis-
tributions. These relationships express the source-induced moments as integrals over
the single-particle–induced moments as (12) suggests and will be given here as follows.
Defining the asymptotic mean value of the source-induced distribution as

Ñ ≡ lim
t→∞〈Ñ(t)〉 =

∂

∂x1
G̃
(
x1, z1, x2, z2, τ

)∣∣
x1=z1=x2=z2=1

,(13)

the derivation of (12) with respect to x1 yields

Ñ = q̄S

∫ ∞

0

N(t) dt,(14)
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where

q̄ ≡
∑

n

npq(n).(15)

We also used the short-hand notation

N(t) ≡ 〈N(t)〉.(16)

In general, in the equations when first-order moments are given explicitly as in (13), we
shall omit the sign of the expected value since there is no risk to mix up the expected
value with the corresponding random variable.

Similarly, for the first moment of the stationary detector count one obtains

Z̃ = q̄S

∫ ∞

0

Z(t) dt.(17)

Equations (14) and (17) can be evaluated after the single-particle–induced expected
values N(t) and Z(t) are determined. This will be performed in the next section. The
single-particle–induced mean value N(t) will play a central role since it will be shown to
serve as a Green’s function to several of the other moments.

The asymptotic values of the one-point second moment of the source-induced neutron
number or detector count can be derived as follows. First, define

MNN (t) ≡ 〈N(t)[N(t) − 1]〉 =
∂2

∂x2
1

G
(
x1, z1, t; x2, z2, t + τ

)∣∣
x1=z1=x2=z2=1

(18)

and

M̃NN ≡
〈
Ñ
(
Ñ − 1

)〉
=

∂2

∂x2
1

G̃
(
x1, z1, x2, z2, τ

)∣∣
x1=z1=x2=z2=1

.(19)

Then, from (12), with twofold derivation, one obtains for the modified second moment
of the asymptotic source-induced distribution, defined as

μ̃NN ≡ M̃NN − Ñ2,(20)

the expression

μ̃NN = q̄S

∫ ∞

0

MNN (t) dt + 〈q(q − 1)〉S
∫ ∞

0

N2(t) dt,(21)

where

〈q(q − 1)〉 =
∑

n

n(n − 1)pq(n).(22)

Equation (21) will be later simplified when it will be shown that the single-particle–
induced second moment MNN can be expressed as a convolution over a source function
with N(t) as a Green’s function.
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From (12) one obtains a similar expression for the detector counts as

μ̃ZZ = q̄S

∫ ∞

0

MZZ(t) dt + 〈q(q − 1)〉S
∫ ∞

0

Z2(t) dt,(23)

where μ̃ZZ and MZZ(t) are defined similarly to (20) and (18). Again, this will be
simplified by expressing MZZ(t) with a convolution integral.

The asymptotic two-point second moments, i.e. the stationary values of the covariance
or correlation function of the neutron number at t and t + τ , and that of the detector
counts around t and t + τ , are defined as

C̃NN (τ) = lim
t→∞

〈
Ñ(t)Ñ(t + τ)

〉
−
〈
Ñ(t)

〉〈
Ñ(t + τ)

〉
=(24)

=
∂2

∂x1∂x2
G̃
(
x1, z1, x2, z2, τ

)∣∣
x1=z1=x2=z2=1

− Ñ2.

A simple derivation of (12) results in

C̃NN (τ) = q̄S

∫ ∞

0

MNN (t, τ) dt + 〈q(q − 1)〉S
∫ ∞

0

N(t)N(t + τ) dt,(25)

where

MNN (t, τ) ≡ 〈N(t)N(t + τ)〉.(26)

Similarly,

C̃ZZ(τ) = q̄S

∫ ∞

0

MZZ(t, τ) dt + 〈q(q − 1)〉S
∫ ∞

0

Z(t)Z(t + τ) dt.(27)

In the next two sections, the single-particle–induced moments N(t), Z(t), MNN (t),
MZZ(t), MNN (t, τ) and MZZ(t, τ) will be determined and the integrals (14), (17), (21),
(23), (25) and (27) evaluated. It will be seen that the second-order moments MNN (t),
etc. need not be calculated explicitly, only the corresponding source functions and the
integrals will be performed over the source functions in (21), (23), (25) and (27).

3. – Derivation of the Feynman-alpha formula

We shall start with a master equation for the joint probability distribution of the
number of neutrons and precursors at time t and the number of detector counts up to
time t in the system. As mentioned earlier, when calculating the single-particle–induced
distributions, it is necessary to consider the delayed neutrons explicitly, because they
appear in fission. In the preceding section, dealing with the generalised Bartlett formula,
we could disregard delayed neutrons because the Bartlett formula is derived from the
source emission properties and the source does not emit delayed neutron precursors.

In this section we shall only deal with the Feynman-alpha formula and thus shall only
use “one-point” distributions and their moments. We shall assume a stationary reactor,
which means that the statistics at time t, induced by one initial particle at t0, will only
depend on t − t0. This fact can be used to retain notation on one time instant only.
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When deriving a backward equation based on the first instant method, it will actually
be a “mixed”-type equation, because the time derivative will be taken with respect to
the terminal (detection) time. However, the scattering operator will be a backward-type
one, referring to the interactions of the initial particle, and in all other respects we shall
utilise the properties of the backward formalism.

According to the above, we shall derive coupled equations for the following quantities.
Let

P
(
N,C1, C2, . . . , C6, Z, t

)
(28)

be the probability that there are N neutrons and Ci precursors in the i-th group at time
t in the system, induced by one initial neutron at t = 0, and that there have been Z
detector counts between t and t − T . Likewise, let

Qj

(
N,C1, C2, . . . , C6, Z, t

)
(29)

be the probability that there are N neutrons and Ci precursors in the i-th group at time
t in the system, induced by one initial precursor in group j at t = 0, and that there have
been Z detector counts between t and t − T . We define the corresponding probability
generating functions as

G
(
x, y1, y2, . . . , y6, z, t

)
=(30)

=
∑
N

∑
C1

∑
C2

· · ·
∑
C6

∑
Z

xNyC1
1 yC2

2 · · · yC6
6 zZP

(
N,C1, C2, . . . , C6, Z, t

)
and

Hj

(
x, y1, y2, . . . , y6, z, t

)
=(31)

=
∑
N

∑
C1

∑
C2

· · ·
∑
C6

∑
Z

xNyC1
1 yC2

2 · · · yC6
6 zZQj

(
N,C1, C2, . . . , C6, Z, t

)
.

The initial conditions for the above quantities read as

P
(
N,C1, C2, . . . , C6, Z, 0

)
= δN,1δC1,0δC2,0 . . . δC6,0δZ,0,(32)

G
(
x, y1, y2, . . . , y6, z, 0

)
= x,(33)

Qj

(
N,C1, C2, . . . , C6, Z, 0

)
= δN,0δC1,0 . . . δCj ,1 . . . δC6,0δZ,0,(34)

and

Hj

(
x, y1, y2, . . . , y6, z, 0

)
= yj .(35)

For P a first-instant–type master equation can be obtained by adding the probabilities
of the mutually exclusive possibilities of having no collision or one collision of the initial
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neutron within (0, dt), respectively. One then obtains

P
(
N,C1, C2, . . . , C6, Z, t

)
=(36)

= (1 − λa dt)P
(
N,C1, C2, . . . , C6, Z, t − dt

)
+

+ λc dt δN,0δC1,0δC2,0 · · · δC6,0δZ,0 + λf dt
∑
l,mj

p(l,m1,m2, . . . ,m6) ×

×
l∏

i=1

P
(
N i, Ci

1, C
i
2, . . . , C

i
6, Z

i, t
) 6∏

j=1

mj∏
i=1

Qj

(
N ji, Cji

1 , Cji
2 , . . . , Cji

6 , Zji, t
)

+

+ λd dt δN,0δC1,0δC2,0 · · · δC6,0

[
Δ(t, T )δZ,1 + Δ̄(t, T )δZ,0

]
,

where the function Δ(t, T ) is defined as

Δ(t, T ) =

{
1, for 0 ≤ t ≤ T,

0, otherwise,
(37)

and

Δ̄(t, T ) = 1 − Δ(t, T ).(38)

The arguments of the products in eq. (36) are subject to the following constraints:

l∑
i=1

N i +
6∑

j=1

mj∑
i=1

N ji = N,(39)

l∑
i=1

Ck
i +

6∑
j=1

mj∑
i=1

Ck
ji = Ck, k = 1, . . . , 6,

l∑
i=1

Zi +
6∑

j=1

mj∑
i=1

Zji = Z.

With similar arguments, i.e. no decay or decay of the initial precursors, one obtains for
the distributions Qj

Qj

(
N,C1, C2, . . . , C6, Z, t

)
=
(
1 − λj dt

)
Qj

(
N,C1, C2, . . . , C6, Z, t − dt

)
+(40)

+ λj dt P
(
N,C1, C2, . . . , C6, Z, t

)
.

The symbols in the above equations have their usual meaning. A summary of notations
used is given in the appendix.
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From (36) and (40) we obtain for the generating functions G and Hj of (30) and (31)
the following differential equations:

∂G(x, y1, y2, . . . , y6, z, t)
∂t

= λf

∑
l,mj

p(l,m1,m2, . . . ,m6)Gl(x, y1, y2, . . . , y6, z, t) ×(41)

×
6∏

j=1

H
mj

j (x, y1, y2, . . . , y6, z, t) + λc −

− λaG(x, y1, y2, . . . , y6, z, t) + λd{(z − 1)Δ(t, T ) + 1}

and

∂Hj(x, y1, y2, . . . , y6, z, t)
∂t

=(42)

= λj

{
G(x, y1, y2, . . . , y6, z, t) − Hj(x, y1, y2, . . . , y6, z, t)

}
.

The second of the above equations can be explicitly solved. By taking into account
the initial condition (35) one gets

Hj

(
x, y1, y2, . . . , y6, z, t

)
= λj

∫ t

0

e−λj(t−t′)G
(
x, y1, y2, . . . , y6, z, t

)
dt′ + yje

−λjt.(43)

Putting this back into (41) yields one single equation from which all statistics can be
derived as

∂G
(
x, y1, y2, . . . , y6, z, t

)
∂t

=(44)

= −λaG
(
x, y1, y2, . . . , y6, z, t

)
+ λd

{
(z − 1)Δ(t, T ) + 1

}
+

+ λc + λf

∑
p
(
l,m1,m2, . . . ,m6

)
Gl
(
x, y1, y2, . . . , y6, z, t

)
×

×
6∏

j=1

(
λj

∫ t

0

e−λj(t−t′)G
(
x, y1, y2, . . . , y6, z, t′

)
dt′ + yje

−λjt

)mj

.

Since the above equation does not contain any derivatives with respect to the trans-
form variables x, yi and z, for any moment, i.e. expected values of any order and any
combination of variables, one single equation can be derived which can be solved sepa-
rately from any other moment equations. The only technical difficulty of the solution is
the calculation of certain integrals as will be seen soon. This is a difference compared to
the forward equation where for the higher moments usually a coupled system of differ-
ential equations needs to be solved. The order of the system is increasing with the order
of the moments. This, in general, constitutes more difficulties in the solution than the
performing of the integrals in the backward case.

We shall now start deriving moments of this equation. For the first moment

N(t) ≡ 〈N(t)〉 =
∂G
(
x, y1, y2, . . . , y6, z, t

)
∂x

∣∣∣∣
x=yi=z=1

, i = 1, . . . , 6,(45)
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one obtains from the equation

dN(t)
dt

= λfν(1 − β)N(t) + λf

6∑
j=1

νβjλj

∫ t

0

e−λj(t−t′)N(t′) dt′ − λaN(t) + δ(t).(46)

Here

ν(1 − β) ≡ 〈νp〉 =
∑

n

∑
m1

· · ·
∑
m6

np(n,m1, . . . ,m6)(47)

and

νβj ≡ 〈νdj
〉 =

∑
n

∑
m1

· · ·
∑
m6

mjp(n,m1, . . . ,mj , . . . ,m6).(48)

In eq. (46) the initial condition (32) was added directly to the equation such that one
has

N(t)|t=−0 = 0.(49)

This was made to help realise later that the first moment N(t) is the Green’s function
of the higher moments. A temporal Laplace transform of (46) yields

N(s) =

∏6
j=1(s + λj)

s7 + a1s6 + a2s5 + · · · + a6s + a7
,(50)

where the coefficients ai, i = 1, . . . , 7 are given by

a1 =
6∑

j=1

λj +
β − ρ

Λ
,(51)

a2 =
6∑

i,j=1
i<j

λiλj +
6∑

j=1

β − βj − ρ

Λ
λj ,

a3 =
6∑

i,j,k=1
i<j<k

λiλjλk +
6∑

i,j=1
i<j

β − (βi + βj) − ρ

Λ
λiλj ,

· · ·

a7 =
β −

(∑6
j=1 βj

)
− ρ

Λ

6∏
j=1

λj =
−ρ

Λ

6∏
j=1

λj .

Here the notation ρ and Λ were introduced as usual (see the appendix).
The inverse Laplace transform yields

N(t) =
6∑

i=0

zie
sit,(52)
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where s0 and si, i = 1, . . . , 6, are the seven roots of the denominator of (50), and

zi =

∏6
j=1(si + λj)∏6
j �=i

(
si − sj

) , i = 0, 1, . . . , 6.(53)

Using (14), (50) and (51), one obtains for the stationary, source-induced mean value
of neutrons

Ñ = q̄SN(s = 0) =
q̄SΛ
−ρ

.(54)

This is a known result that could have been derived directly from, e.g., a deterministic
point kinetic equation.

To calculate the mean and the modified variance of the detector counts of the source-
induced cascade, we start with calculating from

Z(t, T ) ≡ 〈Z(t, T )〉 =
∂G
(
x, y1, y2, . . . , y6, z, t

)
∂z

∣∣∣∣
x=yi=z=1

, i = 1, . . . , 6(55)

and

MZZ(t, T ) ≡ 〈Z(t, T )[Z(t, T ) − 1]〉 =(56)

=
∂2G

(
x, y1, y2, . . . , y6, z, t

)
∂z2

∣∣∣∣
x=yi=z=1

, i = 1, . . . , 6,

respectively. For the first moment one obtains the equation

dZ(t, T )
dt

= λfν(1 − β)Z(t, T ) + λf

6∑
j=1

νβjλj

∫ t

0

e−λj(t−t′)Z(t′, T ) dt′ −(57)

− λaZ(t, T ) + λdΔ(t, T ).

The initial condition is Z(0, T ) = 0. A comparison of (57) with eq. (46), accounting
also for the initial condition for Z, shows that the first moment N(t) is also the Green’s
function for Z(t, T ). Thus the solution can be written as

Z(t, T ) = λd

∫ t

0

N(t − t′)Δ(t′, T ) dt′,(58)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λd

∫ t

0

N(t − t′) dt′ ≡ Z1(t), 0 ≤ t < T,

λd

∫ T

0

N(t − t′) dt′ ≡ Z2(t, T ), t > T.

From here, in the stationary case, one obtains by application of (17)

Z̃(T ) = q̄S

∫ ∞

0

Z(t, T ) dt = ελfÑT,(59)
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which is of course the same result one obtains from forward theory [18].
The second moment can be calculated by applying (56) to (41) with the result

dMZZ(t, T )
dt

= λfν(1 − β)MZZ(t, T ) +(60)

+ λf

6∑
j=1

νβjλj

∫ t

0

e−λj(t−t′)MZZ(t′, T ) dt′ −

− λaMZZ(t, T ) + QZZ(t, T ),

where the source term QZZ(t, T ) is given by

QZZ(t, T ) = λf

[
〈νp(νp − 1)〉Z2(t, T ) +(61)

+ 2
6∑

j=1

〈νpνdj
〉Z(t, T )λj

∫ t

0

e−λj(t−t′)Z(t′, T ) dt′ +

+
6∑

j=1

〈
νdj

(
νdj

− 1
)〉{

λj

∫ t

0

e−λj(t−t′)Z(t′, T ) dt′
}2

+

+ 2
6∑

i,j=1
i<j

〈
νdi

νdj

〉{
λi

∫ t

0

e−λi(t−t′)Z(t′, T ) dt′
}
×

×
{

λj

∫ t

0

e−λj(t−t′)Z(t′, T ) dt′
}]

.

Equation (60) has the same structure as (46), with the exception that the source term
is different. The initial condition, similarly to that of MNN , is

MZZ(0) = 0,(62)

see eq. (33). Since the source term in eq. (46) for N(t) is a delta-function, as it was
remarked earlier, this means that MZZ(t, T ) can be written as a convolution of the
source term QZZ(t, T ) with the Green’s function N(t) as

MZZ(t, T ) =
∫ t

0

QZZ(t′, T )N(t − t′) dt′.(63)

Using (63) in (23) leads to

μ̃ZZ(T ) = Ñ

∫ ∞

0

QZZ(t, T ) dt + 〈q(q − 1)〉S
∫ ∞

0

Z2(t, T ) dt.(64)

This expression will now be calculated. First, the integral can be further simplified. In
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fact, it is easy to show the following equalities by use of integration by parts:

(65) λj

∫ ∞

0

{∫ t

0

e−λj(t−t′)Z(t′, T ) dt′
}2

dt =

=
∫ ∞

0

Z(t, T )
(∫ t

0

e−λj(t−t′)Z(t′, T ) dt′
)

dt

and

∫ ∞

0

{
λi

∫ t

0

e−λi(t−t′)Z(t′, T ) dt′
}{

λj

∫ t

0

e−λj(t−t′)Z(t′, T ) dt′
}

dt =(66)

=
1

λi + λj
·
∫ ∞

0

{
Z(t, T )

(∫ t

0

e−λi(t−t′)Z(t′, T ) dt′
)

+

+Z(t, T )
(∫ t

0

e−λj(t−t′)Z(t′, T ) dt′
)}

dt.

Moreover,

� (T ) ≡
∫ ∞

0

Z2(t, T ) dt =
∫ T

0

∂

∂x

(∫ ∞

0

Z2(t, x) dt

)
dx =(67)

= 2
∫ T

0

∫ ∞

0

Z(t, x)
∂

∂x
Z(t, x) dt dx =

= 2λd

∫ T

0

∫ ∞

0

Z2(t, x)N(t − x) dt dx,

where Z2 is defined in (58), and

∅j(T ) ≡(68)

≡
∫ ∞

0

Z(t, T )
(∫ t

0

e−λj(t−t′)Z(t′, T ) dt′
)

dt =

=
∫ T

0

∂

∂x

{∫ ∞

0

Z(t, x)
(∫ t

0

e−λj(t−t′)Z(t′, x) dt′
)

dt

}
dx =

= ελf

∫ T

0

{∫ ∞

x

e−λjt

[
N(t − x)

(∫ x

0

eλjt′Z1(t′) dt′ +
∫ t

x

eλjt′Z2(t′, x) dt′
)

+

+ Z2(t, x)
∫ t

x

eλjt′N(t′ − x) dt′
]
dt

}
dx.
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Therefore (64) can be compacted as

μ̃ZZ(T ) =
[
Ñλf

〈
νp

(
νp − 1

)〉
+
〈
q(q − 1)〉S

]
� (T ) +(69)

+ Ñλf

6∑
j=1

λj

(
2〈νpνdj

〉 +
〈
νdj

(
νdj−1

)〉)
∅j(T ) +

+ 2Ñλf

6∑
i,j=1
i<j

λiλj

λi + λj

〈
νdi

νdj

〉(
∅i(T ) + ∅j(T )

)
.

We can now write down an explicit expression for the Feynman-alpha formula. It is
usually written in the form

Y (t) ≡ σ̃2
ZZ

Z̃
− 1 =

μ̃ZZ(t)
Z̃(t)

,(70)

where Z̃(t) and μ̃ZZ(t) are given by (59) and (64), respectively, with re-denoting T as
t. Using (61) and (69), it is only necessary to calculate � (T ) and ∅j(T ). This was
evaluated with Mathematica and manually.

Introducing the notations

ωi ≡
zi

si

6∑
j=0

zj

si + sj
, i = 0, 1, . . . , 6,(71)

fi(t) ≡
(

1 +
1 − esit

sit

)
=
(

1 − 1 − e−αit

αit

)
, i = 0, 1, . . . , 6,(72)

and noticing that

6∑
j=0

zj

λi + sj
= 0, i = 1, . . . , 6,(73)

we have the result

μ̃ZZ(t)
Z̃(t)

= 2ελ2
f

[〈
νp

(
νp − 1

)〉
+ 〈q(q − 1)〉ν

q̄
(−ρ)

] 6∑
i=0

ωifi(t) −

− 2ελ2
f

6∑
j=1

λ2
j

(
2
〈
νpνdj

〉
+
〈
νdj

(
νdj−1

)〉) 6∑
i=0

ωifi(t)
s2

i − λ2
j

−

− 4ελ2
f

6∑
i,j=1
i<j

λiλj

λi + λj

〈
νdi

νdj

〉(
λi

6∑
k=0

ωkfk(t)
s2

k − λ2
i

+ λj

6∑
k=0

ωkfk(t)
s2

k − λ2
j

)
.

(74)

In (72), to facilitate comparison with the literature, the notations αi ≡ −si were intro-
duced.



1082 Z. F. KUANG and I. PÁZSIT

For the system of one group of precursors, which was used in [21], one has

z0 =
s0 + λ1

s0 − s1
, z1 = −s1 + λ1

s0 − s1
, zi = 0, λi = 0, i = 2, . . . , 6.(75)

With these relationships eq. (74) reduces to the formula (52) in [21] which is thus a
special case of our result.

Equation (74) shows explicitly the effect of the multiple source on the Feynman-alpha
formula. As was mentioned already in the previous papers using more simplified models,
the effect of the multiple source is a modification of the amplitude of the term due
to prompt correlations, whereas the time-dependence of the formula remains unchanged.
This means that the evaluation method does not need to be changed. Due to the enhanced
amplitude, the performance of the method is expected to be better in ADS than in
traditional systems, especially with deep subcriticalities.

4. – Derivation of the Rossi-alpha formula

The derivation of the equations leading to the Rossi formula is very much the same
as in the previous section, with the obvious difference that we have to keep track of two
time instants. Moreover, the inhomogeneous or source term of the equation, expressing
the detection process, will also be different. However the cascade model is the same and
thus the equation will remain very similar to that of the previous section.

Again, we shall assume a stationary system, such that the probabilities at time t1
and t2, induced by one initial particle at t0, will only depend on t1 − t0 and t2 − t0,
respectively. Thus, similarly to the previous section, we shall set t0 = 0 and t1 = t, and,
in addition, t2 = t + τ .

The variable corresponding to the detection time will correspond to short time in-
tervals that can be regarded as infinitesimal. Due to this, very simple relationships will
exist between the first and second moments of the neutron numbers at t and t+ τ on the
one hand, and the detector counts within t−dt, t and t+ τ −dt, t+ τ on the other hand.
However, the second moments will obey different initial conditions for the two, and thus
the moments will also differ, even if the difference is simple.

Hence we define the neutron- and precursor-induced two-point distributions, analo-
gously to (28) and (29), as

P
(
N1, C11, C12, . . . , C16, Z1, t; N2, C21, C22, . . . , C26, Z2, t + τ

)
(76)

and

Qj

(
N1, C11, C12, . . . , C16, Z1, t; N2, C21, C22, . . . , C26, Z2, t + τ

)
.(77)

The corresponding generating functions, i.e.

G
(
x1, y11, y12, . . . , y16, z1, t; x2, y21, y22, . . . , y26, z2, t + τ

)
(78)

and

Hj

(
x1, y11, y12, . . . , y16, z1, t; x2, y21, y22, . . . , y26, z2, t + τ

)
,(79)
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are defined analogously to (30) and (31). The initial conditions for P , Qj , and G and
Hj can also be easily given as follows:

P
(
N1, C11, C12, . . . , C16, Z1, 0; N2, C21, C22, . . . , C26, Z2, τ

)
=

= δN1,1δC11,0 · · · δC16,0δZ1,0P
(
N2, C21, C22, . . . , C26, Z2, τ

)
;

G
(
x1, y11, y12, . . . , y16, z1, 0; x2, y21, y22, . . . , y26, z2, τ

)
=

= x1G
(
x2, y21, y22, . . . , y26, z2, τ

)
.

(80)

Here the one-point generating function G(x2, y21, y22, . . . , y26, z2, t
′) is defined as

G
(
x2, y21, y22, . . . , y26, z2, t

′) =

= G
(
x1, y11, y12, . . . , y16, z1, 0; x2, y21, y22, . . . , y26, z2, t

′)∣∣
x1=y11=y12=···=y16=z1=1

(81)

and is obviously equivalent to the one-point distribution defined in the previous section.
In a similar way, one will have

Hj

(
x1, y11, y12, . . . , y16, z1, 0; x2, y21, y22, . . . , y26, z2, τ

)
=

= y1jHj

(
x2, y21, y22, . . . , y26, z2, τ

)
, j = 1, . . . , 6.

(82)

It is easy to see that for calculating the correlations, the above initial conditions are
sufficient.

As mentioned above, the structure of the equation is exactly the same as in the
preceding section, thus we turn immediately to the equation for the generating functions.
We will have

d
dt

G
(
x1, y11, y12, . . . , y16, z1, t; x2, y21, y22, . . . , y26, z2, t + τ

)
=

= λc − λaG
(
x1, y11, y12, . . . , y16, z1, t; x2, y21, y22, . . . , y26, z2, t + τ

)
+

+ λd

(
z1Δ(t, dt)c + z2Δ(t + τ, dt) + Δ̄12

)
+

+ λf

∑
l,mj

p
(
l,m1,m2, . . . ,m6

)
×

× Gl
(
x1, y11, y12, . . . , y16, z1, t; x2, y21, y22, . . . , y26, z2, t + τ

)
×

×
6∏

j=1

H
mj

j

(
x1, y11, y12, . . . , y16, z1, t; x2, y21, y22, . . . , y26, z2, t + τ

)

(83)

and

dHj

(
x1, y11, y12, . . . , y16, z1, t; x2, y21, y22, . . . , y26, z2, t + τ

)
dt

=

= λj

[
G
(
x1, y11, y12, . . . , y16, z1, t; x2, y21, y22, . . . , y26, z2, t + τ

)
−

− Hj

(
x1, y11, y12, . . . , y16, z1, t; x2, y21, y22, . . . , y26, z2, t + τ

)]
.

(84)
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In (83), the Δ functions are defined similarly to (37) and (38), namely

Δ(t, dt) =

{
1, for 0 ≤ t ≤ dt,

0, otherwise,
(85)

and

Δ̄12 = 1 − Δ(t, dt) − Δ(t + τ, dt).(86)

Two remarks are in order regarding eqs. (83)–(86). The first is that in (83), the total
derivative with respect to t appears on the r.h.s. which thus affects two arguments. This
is the consequence of the fact that we have transferred the derivative from the initial time
to the terminal times by choosing t0 = 0. The second is that it is assumed that Δ(t, dt)
and Δ(t + τ, dt) are non-overlapping, i.e. τ > dt. This only affects the calculation of the
correlation in detector counts. In experiments the condition τ > dt is always fulfilled
since one only considers joint count statistics in different time bins but not in the same
one.

Again, the generating function of the distribution induced by one single precursor
from the j-th group, Hj , can be expressed explicitly in terms of G by solving (84). As
mentioned, only the case t > 0 needs to be considered. The result, satisfying the initial
condition (82), is

Hj

(
x1, y11, y12, . . . , y16, z1, t; x2, y21, y22, . . . , y26, z2, t + τ

)
=

= λj

∫ t

0

e−λj(t−t′) ×

× G
(
x1, y11, y12, . . . , y16, z1, t

′; x2, y21, y22, . . . , y26, z2, t
′ + τ

)
dt′ +

+ y1je
−λjtHj

(
x2, y21, y22, . . . , y26, z2, τ

)
.

(87)

Using the one-point solution (43) of Hj for the last term of the above, one obtains

Hj

(
x1, y11, y12, . . . , y16, z1, t; x2, y21, y22, . . . , y26, z2, t + τ

)
=

= λj

∫ t

0

e−λj(t−t′) ×

× G
(
x1, y11, y12, . . . , y16, z1, t

′; x2, y21, y22, . . . , y26, z2, t
′ + τ

)
dt′ +

+ y1je
−λjt

{
λj

∫ τ

0

e−λj(τ−t′)G
(
x2, y21, y22, . . . , y26, z2, t

′) dt′ + y2je
−λjτ

}
.

(88)

In the present case, it is obviously not practical to substitute the above solution back
into (83). Rather, it is more convenient to keep it separately.



THE GENERAL BACKWARD THEORY OF NEUTRON FLUCTUATIONS ETC. 1085

The first moment of the neutron number, i.e.

N(t) ≡ 〈N(t)〉 =(89)

=
∂G
(
x1, y11, y12, . . . , y16, z1, t; x2, y21, y22, . . . , y26, z2, t + τ

)
∂x1

∣∣∣∣
xi,yij ,zi=1

,

will be exactly the same as before, i.e. eq. (46) with the initial condition added in form
of a δ-function. Hence the solution for N(t), eq. (52), will also be the same. Calculating
the first moment of the detector counts, i.e.

Z(t) ≡ 〈Z(t)〉 =

=
∂G
(
x1, y11, y12, . . . , y16, z1, t; x2, y21, y22, . . . , y26, z2, t + τ

)
∂z1

∣∣∣∣
xi,yij ,zi=1

,

(90)

will also yield a solution similar to the previous case:

Z(t) = λd

∫ t

0

N(t − t′)Δ(t′, dt) dt′.(91)

Due to the infinitesimal value of dt, (91) can be written as

Z(t) = ελf dtN(t)(92)

and the stationary first moment of the detector counts in a system with a source is given
as

Z̃ = ελf dt
q̄SΛ
−ρ

.(93)

We turn now to the second moments, i.e. the correlations. For the neutron number
we define

MNN (t, τ) ≡ 〈N(t)N(t + τ)〉 =

=
∂2G

(
x1, y11, y12, . . . , y16, z1, t; x2, y21, y22, . . . , y26, z2, t + τ

)
∂x1∂x2

∣∣∣∣
xi,yij ,zi=1

.

(94)

Then, one obtains for MNN the equation

dMNN (t, τ)
dt

= λfν(1 − β)MNN (t, τ) +

+ λf

6∑
j=1

νβjλj

∫ t

0

e−λj(t−t′)MNN (t′, τ) dt′ −

− λaMNN (t, τ) + QNN (t, τ) + δ(t)N(τ),

(95)
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where QNN (t, τ) is given as

QNN (t, τ) =

= λf

[〈
νp(νp − 1)

〉
N(t)N(t + τ) +

+
6∑

j=1

〈
νpνdj

〉{
N(t)λj

∫ t+τ

0

e−λj(t+τ−t′′)N(t′′) dt′′ +

+ N(t + τ)λj

∫ t

0

e−λj(t−t′)N(t′) dt′
}

+

+
6∑

j=1

〈
νdj

(
νdj

− 1
)〉

λj
2

∫ t

0

e−λj(t−t′)N(t′) dt′
∫ t+τ

0

e−λj(t+τ−t′′)N(t′′) dt′′ +

+
6∑

i,j=1
i<j

〈
νdi

νdj

〉
λiλj

{∫ t

0

e−λi(t−t′)N(t′) dt′
∫ t+τ

0

e−λj(t+τ−t′′)N(t′′) dt′′ +

+
∫ t

0

e−λj(t−t′)N(t′) dt′
∫ t+τ

0

e−λi(t+τ−t′′)N(t′′) dt′′
}]

.

(96)

In (95), the initial condition

MNN (0, τ) = N(τ),(97)

which can be obtained from (80) and (94) (or by simple heuristic reasoning), was again
added in form of a δ-function.

Here it is seen again that eq. (95) for MNN (t, τ) is the same as eq. (46) for N(t),
except for the source term, and that N(t) is the Green’s function for MNN (t, τ). Since
the inhomogeneous term of (95) is now equal to QNN (t, τ) + δ(t)N(τ), one will have

MNN (t, τ) =
∫ t

0

[
QNN (t′, τ) + δ(t′)N(τ)

]
N(t − t′) dt′(98)

and using this in (25) will result in

C̃NN (τ) = Ñ

∫ ∞

0

QNN (t, τ) dt + ÑN(τ) + 〈q(q − 1)〉S
∫ ∞

0

N(t)N(t + τ) dt.(99)

The concrete value of this expression is of no interest here, thus the integrals in (99)
will not be evaluated. We just note that by N(0) = 1 and utilizing the concrete form of
QNN (t, τ), one can show that for τ = 0 the above reproduces the stationary value of the
variance of the neutron number in a system with a source, i.e.

C̃NN (0) = σ̃2
NN = μ̃NN + Ñ .(100)
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Our concern of interest is to calculate the correlations in the detector counts, i.e. the
Rossi-alpha formula. Thus, similarly to (94), we write

MZZ(t, τ) ≡ 〈Z(t)Z(t + τ)〉 =

=
∂2G

(
x1, y11, y12, . . . , y16, z1, t; x2, y21, y22, . . . , y26, z2, t + τ

)
∂z1∂z2

∣∣∣∣
xi,yij ,zi=1

.

(101)

For this quantity, a result similar to (95) is obtained, viz.

dMZZ(t, τ)
dt

=

= λfν(1 − β)MZZ(t, τ) +

+ λf

6∑
j=1

νβjλj

∫ t

0

e−λj(t−t′)MNN (t′, τ) dt′ − λaMZZ(t, τ) + QZZ(t, τ),

(102)

where

QZZ(t, τ) =

= λf

[〈
νp(νp − 1)

〉
Z(t)Z(t + τ) +

+
6∑

j=1

〈
νpνdj

〉{
Z(t)λj

∫ t+τ

0

e−λj(t+τ−t′′)Z(t′′) dt′′ +

+ Z(t + τ)λj

∫ t

0

e−λj(t−t′)Z(t′) dt′
}

+

+
6∑

j=1

〈
νdj

(
νdj

− 1
)〉

λj
2

∫ t

0

e−λj(t−t′)Z(t′) dt′
∫ t+τ

0

e−λj(t+τ−t′′)Z(t′′) dt′′ +

+
6∑

i,j=1
i<j

〈
νdi

νdj

〉
λiλj

{∫ t

0

e−λi(t−t′)Z(t′) dt′
∫ t+τ

0

e−λj(t+τ−t′′)Z(t′′) dt′′ +

+
∫ t

0

e−λj(t−t′)Z(t′) dt′
∫ t+τ

0

e−λi(t+τ−t′′)Z(t′′) dt′′
}]

.

(103)

Since from (80) one obtains

MZZ(0, τ) = 0,(104)

there will be no δ-function on the r.h.s. of the equation for MZZ . Thus MZZ is given as
a convolution between N(t) and QZZ(t, τ), and for the correlated counts in a stationary
system with a source, one will have

C̃ZZ(τ) = Ñ

∫ ∞

0

QZZ(t, τ) dt + 〈q(q − 1)〉S
∫ ∞

0

Z(t)Z(t + τ) dt.(105)
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This equation has one term less on the r.h.s. than eq. (99), which expresses the fact that
the detected initial neutron will have no progenies and thus cannot create correlations,
whereas without detection the initial neutron will start a chain.

By virtue of eq. (92), i.e. the fact that we use infinitesimal time bins, from (103) one
will have the simple relation

QZZ(t, τ) = ε2λ2
f (dt)2QNN (t, τ)(106)

and finally

C̃ZZ(τ) = ε2λ2
f (dt)2

(
Ñ

∫ ∞

0

QNN (t, τ) dt + 〈q(q − 1)〉S
∫ ∞

0

N(t)N(t + τ) dt

)
.(107)

In view of the relationship between the cross terms, i.e.

∫ ∞

0

{
N(t)

∫ t+τ

0

e−λj(t+τ−t′′)N(t′′) dt′′ +

+ N(t + τ)
∫ t

0

e−λj(t−t′)N(t′) dt′
}

dt = Ψj(τ),

(108)

∫ ∞

0

{
λj

∫ t

0

e−λj(t−t′)N(t′) dt′
∫ t+τ

0

e−λj(t+τ−t′′)N(t′′) dt′′
}

dt =
1
2

Ψj(τ),(109)

and

∫ ∞

0

{∫ t

0

e−λi(t−t′)N(t′) dt′
∫ t+τ

0

e−λj(t+τ−t′′)N(t′′) dt′′
}

dt +

+
∫ ∞

0

{∫ t

0

e−λj(t−t′)N(t′) dt′
∫ t+τ

0

e−λi(t+τ−t′′)N(t′′) dt′′
}

dt =

=
1

λi + λj

[
Ψi(τ) + Ψj(τ)

]
,

(110)

this formula can be compactly written as

C̃ZZ(τ) = ε2λ2
f (dt)2

[{
Ñλf

〈
νp

(
νp − 1

)〉
+ 〈q(q − 1)〉S

}∫ ∞

0

N(t)N(t + τ) dt +

+
6∑

j=1

λj

{〈
νpνdj

〉
+

1
2
(
νdj

(
νdj

− 1
))}

Ψj(τ) +

+
6∑

i,j=1
i<j

λiλj

λi + λj

〈
νdi

νdj

〉{
Ψi(τ) + Ψj(τ)

}]
.

(111)
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Here

Ψj(τ) =
∫ ∞

0

e−λj(t+τ)N(t)

(∫ (t+τ)

0

eλjt′N(t′) dt′
)

dt +

+
∫ ∞

−τ

e−λj(t+τ)N(t + 2τ)

(∫ (t+τ)

0

eλjt′N(t′) dt′
)

dt.

(112)

The Rossi formula is usually written in the form

Prossi(t) dt =
C̃ZZ(t)

Z̃
(113)

Using (111), it is only necessary to calculate
∫∞
0

N(t)N(t + τ) dt and Ψj(τ). They were
evaluated with a Mathematica notebook analytically.

The result by re-denoting τ as t can be compactly written as follows:

Prossi(t) dt =

= ελ2
f dt

{[〈
νp

(
νp − 1

)〉
+ 〈q(q − 1)〉ν

q̄
(−ρ)

] 6∑
i=0

ωifi(t) −

−
6∑

j=1

λ2
j

(
2〈νpνdj

〉 +
〈
νdj

(
νdj

− 1
)〉) 6∑

i=0

ωifi(t)
s2

i − λ2
j

−

− 2
6∑

i,j=1
i<j

λiλj

λi + λj

〈
νdi

νdj

〉(
λi

6∑
k=0

ωkfk(t)
s2

k − λ2
i

+ λj

6∑
k=0

ωkfk(t)
s2

k − λ2
j

)}
,

(114)

where the functions ωi are exactly the same as in (71), whereas the functions fi(t) are
defined as

fi(t) ≡ −sie
sit = αie

−αit, i = 0, 1, . . . , 6.(115)

This is the rigorous solution for the Rossi-alpha formula with multiple emission sources
and by taking the delayed neutrons as well as their correlations into account.

Again, it can be shown that by condensing the six delayed neutron groups into one,
the present formula is identical with the formula derived recently in [21].

It is also seen that the presence of the multiple source in the Rossi-alpha formula has
the same consequences as in case of the Feynman-alpha formula. Namely, the time de-
pendence of the formula is unchanged, only the amplitude is increased. The contribution
of the source correlations (multiplicity) to the correlated detector counts has the same
relative weight as in the case of the Feynman-alpha. Again, this property can be seen
already in the starting equations, cf. eqs. (103) and (105), without deriving the final
formula.
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5. – Conclusions

The present results constitute the most detailed and rigorous calculations of the
Feynman-alpha and Rossi-alpha formulae for systems with multiple emission sources
(ADS), six delayed neutron groups and prompt-delayed and delayed-delayed correlations
included. Besides the value of the results, it was demonstrated how the problem can
be solved effectively with a combination of analytical techniques and symbolic algebra
calculations, using Mathematica.

The results show that the dependence of the formulas on the counting time (Feynman-
alpha) or on the time delay of the covariance (Rossi-alpha) is the same for a spallation
source as it was in the case of traditional sources. It is only the amplitude of the corre-
sponding expressions that is increased. The physical reason is that the time dependence
of the formulas, i.e. the saturation time of the variance-to-mean and the decay of the
covariance, is related to the dying-out of the individual chains induced by the source neu-
trons. This dying-out is only related to the properties of the system, but not the source.
The amplitude of the variance-to-mean and the covariance, respectively, is determined
by the production rate of correlated neutrons. In a traditional system this production
takes place in the subcritical fission chains, whereas in case of a spallation source, an
extra term exists since original correlations are generated already in the source. This
is why the amplitude is increased. This increase of the amplitude is useful in practical
applications, thus use of the Feynman- and Rossi-alpha methods is promising in future
accelerator-based systems.

From the point of view of practical applications, the reactor physics model used
is rather restrictive, i.e. an infinite, homogeneous and energy-independent model. For
practical applications several of these limitations should be eliminated. In particular, the
energy dependence may play a larger role than in traditional systems, due to the high
energy of the source neutrons. Calculations in more complicated systems, however, lend
little hope of analytical solutions and will require the use of Monte Carlo methods.

Appendix

Nomenclature

v = neutron velocity (constant).
ν̄ = average number of total neutrons per fission.
Σc = macroscopic cross-section of capture.
Σf = macroscopic cross-section of fission.
Σd = macroscopic cross-section of detection.
λc ≡ v · Σc = probability of capture per unit time per neutron.
λf ≡ v · Σf = probability of fission per unit time per neutron.
λd ≡ v · Σd = probability of detection per neutron and unit time.
λa = λf + λc + λd is the total probability of neutron absorption per unit time per

neutron.
λj = the j-th group delayed-neutron time constant.
p(n,m1, . . . ,m6) = probability of emission of n prompt neutrons and mj delayed
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neutron precursors from the j-th group per fission.
pq(n) = probability that n neutrons are generated in a source emission event.
S = probability of an external-source neutron emission per unit time.
ρ ≡ νλf−λa

νλf
= νΣf−Σa

νΣf
reactivity of the system.

Λ = 1
νλf

.

ε = λd
λf

detector efficiency.

〈νp(νp − 1)〉 =
∑

n

∑
m n(n − 1)p(n,m1, . . . ,m6).

〈νpνdj
〉 =

∑
n

∑
m1

· · ·∑m6
nmjp(n,m1, . . . ,m6).

〈νdj
(νdj

− 1)〉∑n

∑
m1

· · ·∑m6
mj(mj − 1)p(n,m1, . . . ,m6).

〈νdi
νdj

〉 =
∑

n

∑
m1

· · ·∑m6
mimjp(n,m1, . . . ,m6).

Dν = 〈νp(νp−1)〉
ν̄2

p
fission Diven factor.

Dq = 〈q(q−1)〉
q̄2 source Diven factor.
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