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ABSTRACT

In this paper, we present the critical neutron flux flattening problem
governed by the critical transport equation in a nonuniform slab with peri-
odic boundary conditions. Existence and uniqueness theorem of the optimal

solution is shown in continuous function space.
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1. INTRODUCTION

Since 1970s, optimal control theory of distributed par;meter systems has
come into wide use in the nuclear field, both to nuclear design problems and to
nuclear plant operation problems|(1, 2|. One type of the problems is to minimize
the deviation of the flux distribution from its average value by manipulating the
ﬁssile material distribution, which is the so-called flux flattening problem][1].

Consider the critical neutron distribution in a nonuniform slab of thickness
2a with periodic boundary conditions. The angular neutron flux flattening
problem is to[cf. 3-6]

minimize I(¢)) = [°, [} |¢(z,p) — M|*dzdp, (1)
while the state variable 1 is subject to the requirement for the conservation of
the total output

[, [ o(z)u(z)y(z, p)dzdu = P = constant > 0, (2)

and the state equations

pEp(z,u) + o(2)¢(z, u) = 22LE) [+ g (2, u)dy! (3)
Y(—a,u) =P(a,u), |u| <1 (4)
¢(I, I‘L) >0, |z| <a, I”" <L (5)

Where M1 denotes the mean value of 1, that is My = 21; e I Y(z, p)dzdp.
o(z) is the total cross section, and u(x) is the mean number of secondaries per
collision.

We take u(x) as the controllable function, and it belongs to the admissible
control set denoted by

U={ueX:0<C;<u(z) <Cy},
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where C; and C; are positive constants, and X = L*|—a, a], the usual Banach
space consisting of all essentially bounded functions on [-a, a].

Let Y be the state space, and V denote the set

V = {¢ €Y : there exists u € U such that (u, ¢) satisfies (2)-(5) }.

Then the optimal control problem can be written as the minimization problem

W) =migIy), ¥ €V, ©)

If the Hilbert space L?([—a,a] X [—1,1]) is chosen as the state space, the
similar problem has been discussed in [5]. And the existence-uniqueness theorem
and optimality conditions for the optimal solution have been obtained. These
results extended those given by Terney(7] in a symmetric, 1-D slab reactor
described by one group theory. In order to disclose the difficulty that we are
going to meet, we’d like to say a few words about the proof of the existence-
uniqueness theorem in [5].

The authors showed that V is a closed convex set, I(-) is a strictly convex
continuous functional in V, and |W}|ilz—r'l°° I(%) = oo. Therefore the existence of
the optimal solution comes from the reflexiveness of L?*([—a,a] x [—1,1]). And
the uniqueness comes from the strict convexity of the performance index.

However, in order to consider the numerical analysis and computation, it
is necessary to study the problem in continuous function space. The non-
reflexiveness of the continuous function space make the existence of the optimal

solution so difficult that we have to leave it as an open problem up to now.

In this paper, we are concerned with the neutron flux flattening problem.
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What we mean by this is that the following performance index F(-), instead of
I(-), is considered.

F(¢) = 2, |¢(z) — mé|'dz, (7)
where ¢ = 1 [, ¢(z, u)dp is the neutron flux, and m¢ = = [, ¢(z)dz.

The physical meaning of (7) is obvious. Actually it is expected that
¢(z) = constant. In this case, there is no leakage of neutron and thus the
reactor has the least amount of nuclear fuel. So we say that the flatter the
neutron flux is, the safer the reactor is.

For the new performance index F(-), the existence 6f the optimal solution
becomes easier(see Theorem 3.1). But since [, ¥(z, u)dp = [*, ¢'(z, u)du may
be possible for different ¢ and ¢', the strict convexity of F(-) vanishes so that
the uniqueness of the optimal solution becomes more difficult.

In this paper, we show the existence-uniqueness theorem of the optimal
solution with different methods from [5].

Before ending this section, we make the following assumption for the next
sections.

(H) o(x) is nonnegative continuous function on [-a, a], and 0 < oy =

zcﬂl_igala(:v) <o(z) < zg[l_aica]a(z) = op.

2. FORMULATION OF THE PROBLEM

Let Q = [-a, a), D = [-1,0)U (0, 1], G = Q@ x D, and Y be the Banach space
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composed of all real continuous functions defined on G with the supremum
norm || - || = sup| - (9)!-

For any ¢ € V, let
¢ =11 vz, u)du'. (8)

Then ¢ € Z = C(Q), the continuous function space with the maximum norm,

and
$>0, (9)
1o o(z)u(z)o(z)dz = 5;—, (10)

and (3) and (4) lead to that

{1 - ezp[—; 2, 0(s)ds|} "} (Jroud + J:oud), ifu>0,

(1) ¥=1 e, ifu=0,

l {1- e:cp[% [, o(s)ds]} (Jsoud + Jyoud), i1fu<O0.

where
1 z 1 * ! ! ! U
Jyoud(z,p) = ~ /_a ez:p[—; L' o(s)ds|o(z)u(z")d(z")dz',
Jyoud(z,p) = ;1;/: ezp{—%[/: o(s)ds + /_:o(s)ds]}a(x')u(z’)¢(x’)da:’,
Jsoud(z,p) = —%‘/: e:z:p[%’ /;z o(s)dslo(z)u(z)¢(z")dz’,
T,oud(z, 1) = —% [ exp{—‘lz[ / ¥ st [ :a(s)ds]}a(z’)u(z')¢(z')dx',
Integrating (11) with respect to p, and replacing p with }, we get
¢ = I, K(z,2')u(z)$()dz, (12)
where

K(z,z') = %o(z') | d—:{l —exp[—t [2, o(s)ds|}!x
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{exp(=| [ o(s)ds|t) + exp(—[[2, o(s)ds — | JF' o(s)ds[]t)}
Let W denote the set {¢ € Z : there exists u € U such that (u, ¢) satisfies

(9), (10) and (12)}. Then the corresponding optimal problem to the index (M

can be written as the minimization problem

F(¢°) = min F(9), (13)

3. EXISTENCE-UNIQUENESS THEOREM

Let us define integral operators K; from Z to Z, K; from X to Z, and K;
from L*(Q) to L*(Q), the usual Hilbert space composed of square integrable
functions, by

Ko = [¢ K(z,2') o (2')d2', 1=1,2,3 (14)

Lemma 3.1 (1) if ¢ = K;¢ and ¢ > 0, then ¢ > 0,7 = 1,2, 3;

(2) K; is a compact operator fi'om Z to Z;

(3) K; is a compact operator from X to Z.

(4) K3 is a compact operator from L*(Q) to L*(Q).

Proof. (1) is obvious.

(2) Considering the transform

y = f(s) = [Z,0(s)ds — 52, Ao = [°, 0(s)ds, (15)
we have
2, K(z,z')dz'

= L[ 901 — exp(—Aot)} [ %, {exp(~|y — ¥'[t) + exp(—[Ao — |y — ¥/[}t) }dy/

2
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=1z (16)

Hence, for every ¢ € Z,

|K¢(z)| < J2, K(z,2")|¢(z')|dz’ < ||¢]. (17)
This shows that for any bounded set S in Z, KS is uniformly bounded.

Further, for any ¢ E S, 11,22 € Q, by the same transform with (15), a
tedious calculation shows that

|K¢(z1) — Ko(zs)|
< Il 1 — exp(—Aot)] ey, y2, 1).
where
ofys, ya,t) = |2 — 2exp(=5221t)| + | exp[—(va + 42)1] — expl— (s + 42)1]| +
| exp[— (42 —va)t] —exp[— (52 —y1)t]| +|2 exp(—Dot) — 2 exp[— (Ao — 2312])1] . (18)

Since a(y;,y2,t) < 6, for any € > 0, there exists T > 0, independent in ¢,
such that

7% &1 - exp(—Aot)| " (y1, y2,t) < § (19)

Since |exp(z)—-1| < |z|,z < 0, it is easy to check that a(y1,y2,t) < 4|y2—w1lt.
Thus

T %01 - exp(—Aot)] " a(y1,v2,1) < 4lys —w|T [T #[1 — exp(—Aot)]™* (20)

From (19) and (20), one may easily see that KS is an equi-continuous set.
Therefore KS is a locally compact set in Z, and K is a compact operator from
Z to Z;

(3) may be obtained by the same procedure with (2).

(4) has been shown in Ref.8."
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Lemma 3.2[cf. 11] W # 0 iff C; > ﬁ, where 7(K;) denotes the spectral
radius of Kj;.

Proof. The same procedure with Lemma 6 in Ref. 9 shows that v(K;) >
0. Theorem 2.1 in Ref. 10> shows that ~4(K;) is an eigenvalue of K; with

nonnegative eigenfunction ¢. Let $(z) =3 - :i;):(:) =y then ¢ € W with the

1
v(K1)*®

corresponding %(z) =

On the other hand, if W # 0, there exists u € U and ¢ >0 [Lemma 3.1(1)]
such that ¢ = K ju¢ < MK;¢. Therefore the same reason with Lemma 6 in
Ref. 9 shows that M> Wll?x_)

Lemma 3.3 W is a closed convex set in Z.

Proof. It is easy to show that W is a convex set in Z [cf. 11].

Suppose that {¢,} CW, and ¢, strongly converges to ¢y € Z. By the
definition of W, there exists{u,} C U such that ¢, = Kzu,dp.

Since U is a weak” closed set in X = (L*(Q))*, the conjugate space of the
usual absolutely integrable function space L*(Q), there exists a subsequence of
{un}, still denoted by {u,}, and ug € U such that

[2. un(z) f(z)dz — [2, uo(2) f(2)dz, for every fe L'(Q), (21)
And it is easy to see that

[%. un(T)Pn(z) f(z)dz — [2, uo(T)d0(2) f(z)dz, for every fe L(Q), (22)

In particular,

[2aun(2)n(2) f(2)dz — [2, uo(z)0() f(z)dz, for every fe L2(Q),  (23)

Lemma 3.1(4) concludes ¢o = Ksuodo. That is
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do(z) = [°, K(z,2')uo(z)do(2')d2, (24)

Therefore it is easy to find ¢ € W.

Lemma 3.4 F() is a strictly convex functional in W.

Proof. For any ¢;, ¢, in W,and 0 <t <1,

F(tey + (1 —t)¢s)
= J,[t(¢1(2) — mé1) + (1 — t)(d2(z) — my)]*dz
=t [*,($1(z) — m1)2dz + (1 — t) [2,(d2(z) — m)?dz — ¢(1 — ) [2,[(41(2) —
mé; — (¢2(z) — m¢s)|?dz, (25)

If J,[(61(2) — méh — ($a(z) —mba) Pdz = O, (¢1(2) —mdn) — (d2(z) —ms) =
0. So ¢1(z) — ¢2(z) = meé — m¢, = constant, and the boundary conditions
conclude that ¢;(z) = ¢2(z). Therefore we have shown the lemma.

Theorem 3.1 If C; > 1(—}(1—), where ~(K;) denotes the spectral radius of K,
there is unique ¢* in W such thaf

F(¢") = min F(4), (26)

Proof. The uniqueness comes directly from the strict convexity of F. In the
following, we shall show the existence of the optimal solution.

Let {¢n} be a minimized sequence, that is to say that ¢, € W, and lim F(¢n) =
inf F(4). So

[22(mén — $n(z))*dz < Cs, (27)

Since

meo, < m[ﬁa(m(ﬁn — ¢n(z))o(z)un(z)dz + [2, bn(z)o(z)un(z)dz



160 ZHI-FENG KUANG ET AL.

< G Calla(mdn — $n(2))dz)? + ]

S 051 (28)
[24 $hdz < 20J2,(n(z) — mn) dz + [%4(mdn)*dz] < Ce. (29)
And since

[%. K(z,z')%dz’
< [2,dz! [ (1 — exp(—Aot)] 2 [° s {exp(—2| [ o(s)ds|t) + 2 exp(—Adt)

+exp(—2(f2, a(s)ds — | [ o(s)ds|}t)}
< I @s(1 — exp (= Act)] " #is[1 — exp(—280t)] + 2 J1° 875 exp(—240t)}
< Cy (30)
|6n(2)[* < J2a[K (2, 2')un(2)]* 2, 47 (2)de’ < Cs. (31)
Where C;, i =1, ---, 8, are constants. So {u,,¢‘,.} is bounded in L®(Q).

Since ¢, = Kiu,¢,, and K, is compact, there exists a convergent subse-
quence of {@,}, still denoted by {#,}. Suppose @, converges to ¢, in Z. Since
W is closed, ¢o € W. Therefore

F(go) = lim F(¢,) = inf F(9), (32)

Now let’s turn to the original problem, we have

Theorem 3.2 If C,; > ﬂfl(T, where v(K) denotes the spectral radius of K,
there is unique (u*,%*) such that

F(¥") = mig F(W) (33
while (u*,1*) satisfies the following equations:

I [ o(z)u*(2)¢* (2, p)dzdp = P = constant > 0, (34)
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uZ ot (z,p) + o(2)9* (z, ) = ZELC [+ g (2, 4t dy! (35)
V' (—a,p) =¥ (a,u), |#|<1. (36)
¥*(z,p) 20, |z| < q, v <1 (37)

Proof. Let ¢* be the unique optimal solution with corresponding u* € U.

Then (u*,¢*) satisfies equations (9), (10) and (12).

Let
| {1 - ezp[~ [2,0(s)ds]}(Jrou' " + Tyou'd*), ifu >0,
(38) v = u'e’, ifu=0,
{1 — ezp[L [°, o(s)ds]} " (Jsou'$" + Juou'd*), ifu <O.

Then (u*,1") satisfies equations (2)-(5), and

F(¢*) = min F(¢) (39)

Suppose there is another (u',1)') satisfies equations (2)-(5) and (39).

Then

Let

Yo(z,u) = ¢'(z, 1) — ¢*(z, 1) (40)
LWz u)dp = M2 90 (2, ) dp = ¢°(2) (41)
b asto(z, k) + o(2)po(z, 1) = o(z)[u'(2) — u*(z)]¢" () (42)
Wo(—a, ) = Yo(a, ), |4 < 1. | (43)

161

Considering the transform (15) and denoting ¥o(f~(s), 1) and ETf:l"ﬁﬁ [W'(f~2(s))—

u*(f~1(s))]6*(F~1(s)) by (s, ) and ¢(s), (42) becomes

o P(s,m) + (s, m) = &(s) (44)

P(—48,0) = P(-48,m), |ul <1 (45)
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fl (s p)du =0, (46)

Let en(s) = T=exp( 2"”") (n = 0,+1,+2,---). Then {e,} is a complete

orthonormal base in L*[—42, 42].

M%J(s,u) and 1'/;(3, , ) can be expressed by

o) = 'S enls)falu) (47)

b0 ) = 'S enls)on(n) (48)
where

() = 1%y en(s)B(s,m)ds, (49)

(1) = I, enlhublo, s, (50)

The integration of (50) by parts causes that

gn(n) = B ufa(w) (51)
Suppose
3s) = 3 anea(s) (52)

Then (44) becomes that

L (1 BEu)en(s)falk) = T anea(s) (53)
So

(1 — Z%u) falk) = an, (54)
J2) Falu)dp = SptaiipQeinn p = +1, 42, - (55)
JZ1 fo(w)dp = 2a (56)

On the other hand, (46) and (47) lead to [*, f.(s)dp = 0,n = 0,41, £2,---.

Therefore a, = 0,n = 0,%£1,+2,---, and é = 0. Thus v'(z) = u*(z) and
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¢'(z,u) = ¥*(z,u). Thus we complete the proof.
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