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ABSTRACT

Spectral properties of the transport operator in a nonuniform
slab with generalized boundary conditions were first studied in
Ref. [1]. The author showed that the operator is an infinitesimal
generator of a C0-semigroup and it has at least one real eigen-
value displaying the asymptotic behavior of the initial-value
problem. Both continuous spectrum and possible accumula-
tion points of isolated eigenvalues have not been considered.
In this paper, we show that the continuous spectrum fill in a
passage, and the possible accumulation points of isolated
eigenvalues in the right half plane lie on the right boundary
of the passage.
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1. INTRODUCTION

Since the pioneering work of Lehner and Wing,[2,3] the spectrum of the
neutron transport operator has been the subject of intensive study by mathe-
maticians, physicists, and nuclear engineers. Instead of summarizing all the
research, we concentrate ourselves on reviewing some relative work about
the slab transport operator. Reference [2] treats mono-energetic neutron
transport with isotropic scattering in a uniform slab surrounded either by
vacuum or by a perfect absorber. And complete knowledge of the spectrum,
a half plane of continuous spectrum plus finite real eigenvalues, is obtained.
References [4,5] respectively extend theLehner andWing approach to uniform
slabwith anisotropic scattering andnonuniform slabwith isotropic scattering.
And knowledge of the spectrum, a half plane of continuous spectrum plus at
least one real eigenvalue, is obtained. Reference [6] points out that the
vacuum boundary conditions are not the only ones that need investigation
and proposes the perfect reflection boundary conditions. The immitation of
Lehner and Wing approach leads to a wrong assertion of Theorem 1 of Ref.
[6]. The correct knowledge of the spectrum, a line of continuous spectrum
plus finite real eigenvalues, is not obtained until in Ref. [7]. But the Fourier
analysis method employed in Ref. [7] is useful only for uniform parallel
shapes with perfect reflection boundary conditions. So it seems that both
Lehner and Wing approach and Fourier analysis method are not employed to
obtain complete knowledge of the spectrum of the operator in a nonuniform
slab with generalized boundary conditions proposed in Ref. [1].

In this paper, first we introduce a transform which makes out the rela-
tion between the generalized boundary conditions and the perfect reflection
conditions. Then we show that continuous spectrum of the streaming operator
fills in a passage by using convex set theory and constructing a set of functions
which is different from the one in Refs. [2,4,5]. Last we study the spectrum of
the transport operator by perturbation theory for linear operators, and show
that the left half plane is contained in the resolvent set and the possible accu-
mulation points in the right half plane lie in the right boundary of the passage.

2. FORMULATION OF PROBLEMS

Let H�L2(R) be the space of square-integrable functions in rectangle
R � fðx,�Þ : jxj � a, j�j � 1g with the scalar product

ð f , gÞ ¼

Z þ1


1

d�

Z þa


a

dx f ðx,�Þgðx,�Þ,

and the norm k f k¼ ( f, f )1/2.
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The transport operator in a nonuniform slab with generalized bound-
ary conditions is defined in H by [cf. 1]:

A� ¼ B� þ �ðxÞJ �, B� ¼ 
�
@

@x
� 
 �ðxÞ �,

J� ¼
1

2

Z þ1


1

� d�0:

The domain D(J) of J is H, and the domains D(A) and D(B) of A and B are
defined by DðAÞ � DðBÞ � f f 2 Hj f ðx,�Þ is absolutely continuous in x for
almost each fixed �, Bf 2 H, and �ð�Þ f ð
a,�Þ ¼ �ð�Þ f ða,�Þ, j�j � 1g.

�(x) is the total cross section, and �(x)¼ �(x)C(x) where C(x) is the
mean number of secondaries per collision, and �(�) and �(�) are reflection
functions.

Throughout this paper, we assume

(A1) �(x) and �(x) are nonnegative continuous functions in [
a, a];
(A2) �(�) and �(�) are continuous functions in [
1, 1] satisfying the

reflection equation �(
�)¼ �(�), j�j � 1, and

0 < �0 � �ð�Þ � �ð�Þ � �1 � 1, � 2 ð0, 1�, ð2:1Þ

From the reflection equation and Eq. (2.1), one may easily see that

0 < �0 � �ð�Þ � �ð�Þ � �1 � 1, � 2 ½
1, 0Þ: ð2:2Þ

Let f 2 DðAÞ. Considering the following transform

gðx,�Þ ¼
1

�ð�Þða þ xÞ þ �ð�Þða 
 xÞ
f ðx,�Þ, ð2:3Þ

we may find that g 2 � � fg 2 Hjgðx,�Þ is absolutely continuous in x for
almost each fixed �, �ð@g=@xÞ 2 H, and gð
a,�Þ ¼ gða,�Þ,j�j � 1g. And

Af ¼ 
�
@f

@x

 �ðxÞ f þ

�ðxÞ

2

Z þ1


1

f ðx,�0
Þ d�0

¼ ½�ð�Þða þ xÞ þ �ð�Þða 
 xÞ�

� 
�
@g

@x

 Uðx,�Þg þ

Z þ1


1

kðx,�,�0
Þgðx,�0

Þ d�0

� �

where

Uðx,�Þ ¼ �ðxÞ þ
�ð�ð�Þ 
 �ð�ÞÞ

�ð�Þða þ xÞ þ �ð�Þða 
 xÞ
ð2:4Þ

kðx,�,�0
Þ ¼

�ðxÞ

2
�

�ð�0
Þða þ xÞ þ �ð�0

Þða 
 xÞ

�ð�Þða þ xÞ þ �ð�Þða 
 xÞ
ð2:5Þ

TRANSPORT OPERATOR IN NONUNIFORM SLAB 275



©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

Let us define the assistant operator T in H by:

T� ¼ L� þ K �, L� ¼ 
�
@

@x
� 
 Uðx,�Þ �,

K� ¼

Z þ1


1

kðx,�,�0
Þ�d�0:

The domains D(T ) and D(L) of T and L are defined by the linear
manifold �. Then

Af ¼ ½�ð�Þða þ xÞ þ �ð�Þða 
 xÞ�Tg ð2:6Þ

where f and g satisfy Eq. (2.3).

Remark 2.1. In the above, we refer ‘‘continuous spectrum’’ as the spectrum
filling in a domain in C, the complex plane, it is a concept opposite to
isolated spectrum. In the following, we follow the standard mathematical
division and denote the resolvent set, the residual spectrum, continuous
spectrum and point spectrum by 
(�), R�(�), C�(�), and P�(�).

Theorem 2.1.

(1) P�(A)¼P�(T );
(2) R�(A)¼R�(T );
(3) C�(A)¼C�(T );
(4) �(A)¼ �(T ).

Proof.

(1) Comes directly from Eqs. (2.3) and (2.6).
(2) Suppose � 2 R�ðAÞ. Then the range R(�
A) of (�
A) is not

dense in H. This leads to the existence of such an 0 6¼ f0 2 H that
((�
A) f, f0)¼ 0, for every f in D(A).

Considering the function g0(x, �)¼ [�(�)(aþ x)þ �(�)(a
 x)] f0(x, �),
we may find that 0 6¼ g0 2 H, and for every g 2 DðTÞ,

ðð�
 TÞg, g0Þ

¼ �

Z a


a

Z 1


1

gðx,�Þ½�ð�Þða þ xÞ þ �ð�Þða 
 xÞ� f0ðx,�Þ dx d�

þ

Z a


a

Z 1


1

�
@g

@x
½�ð�Þða þ xÞ þ �ð�Þða 
 xÞ� f0ðx,�Þ dx d�

þ

Z a


a

Z 1


1

�ðxÞ þ
�½�ð�Þ 
 �ð�Þ�

�ð�Þða þ xÞ þ �ð�Þða 
 xÞ

� �
� gðx,�Þ½�ð�Þða þ xÞ þ �ð�Þða 
 xÞ� f0ðx,�Þ dx d�
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1

2

Z a


a

Z 1


1

�ðxÞ

Z 1


1

�ð�0
Þða þ xÞ þ �ð�0

Þða 
 xÞ

�ð�Þða þ xÞ þ �ð�Þða 
 xÞ
gðx,�0

Þ d�0

� �
� ½�ð�Þða þ xÞ þ �ð�Þða 
 xÞ� f0ðx,�Þ dx d�

¼ �

Z a


a

Z 1


1

Gðx,�Þ f0ðx,�Þ dx d�þ

Z a


a

Z 1


1

�
@G

@x
f0ðx,�Þ dx d�

þ

Z a


a

Z 1


1

�ðxÞGðx,�Þ f0ðx,�Þ dx d�



1

2

Z a


a

Z 1


1

�ðxÞ

Z 1


1

Gðx,�0
Þd�0 f0ðx,�Þ dx d�

¼ ðð�
 TÞG, f0Þ ¼ 0:

This is because ½�ð�ÞðaþxÞþ �ð�Þða
xÞ�gðx,�Þ ¼G 2DðAÞ. Therefore
we show that � 2 R�ðTÞ. The opposite procedure shows the inverse inclusion.

(3) Suppose � 2 C�ðAÞ. Then there exists a set of functions f� 2 DðAÞ
such that k f�k� const> 0, and

lim
�!0

kð�
 AÞ f�k ¼ 0:

Considering the function set

g�ðx,�Þ ¼
1

�ð�Þða þ xÞ þ �ð�Þða 
 xÞ
f�ðx,�Þ,

we may find from Eqs. (2.3) and (2.6) that g� 2 DðTÞ, and

kg�k
2
¼

Z a


a

Z 1


1

1

½�ð�ÞðaþxÞþ�ð�Þða
xÞ�2
j f�ðx,�Þj2 dxd�

�
1

4a2�2
1

k f�k
2
� const> 0

ð�
TÞg�
�� ��2

¼

Z a


a

Z 1


1

1

½�ð�ÞðaþxÞþ�ð�Þða
xÞ�2
jð�
AÞf�ðx,�Þj2dx d�

�
1

4a2�2
0

kð�
AÞ f�k
2

Hence lim�!0 kð�
 TÞg�k ¼ 0. This shows � 2 C�ðTÞ after considera-
tion of (1). And the same reason shows the inverse inclusion.

(4) is the direct conclusion of (1), (2) and (3).
Since all the proof of Theorem 2.1 is valid while �(x)� 0, we have the

following corollary.
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Corollary 2.1.

(1) P�(B)¼P�(L);
(2) R�(B)¼R�(L);
(3) C�(B)¼C�(L);
(4) �(B)¼ �(L).

3. SPECTRUM OF L

It is easy to check under the reflection condition �(
�)¼ �(�),j�j � 1
that the adjoint operator of A is as follows.

A�
� ¼ B�

� þ �ðxÞJ �, B�
� ¼ �

@

@x
� 
 �ðxÞ �,

The domains D(A�) and D(B�) of A� and B� are defined by DðA�
Þ �

DðB�
Þ � f� 2 Hj�ðx,�Þ is absolutely continuous in x for almost each fixed

�, B�� 2 H, and �(�) f (
a,�)¼ �(�) f (a, �), j�j � 1g.

Theorem 3.1.

(1) R�ðAÞ ¼ R�ðTÞ ¼ ;;
(2) R�ðBÞ ¼ R�ðLÞ ¼ ;.

Proof. Suppose � 2 R�ðAÞ. Then � 2 P�ðA
�
Þ by [(11-7), P.244, 8]. Take

� 2 DðA�
Þ such that �� ¼ A��. That is

��ðx,�Þ ¼ �
@�

@x

 �ðxÞ�ðx,�Þ þ

�ðxÞ

2

Z 1


1

�ðx,�0
Þ d�0

Let f ðx,�Þ ¼ �ðx, 
�Þ. It is easy to find that f 2 DðAÞ, and �f ¼Af. This
contradiction shows that R�ðAÞ ¼ ;.

(2) is the particular case of (1) when �(x)¼ 0.
Since �(x), �(�), and �(�) are continuous functions, we can assume

that UM ¼ maxfUðx,�Þ : ðx,�Þ 2 ½
a, a� � ½
1, 1�g, and Um ¼ minfUðx,�Þ :
ðx,�Þ 2 ½
a, a� � ½
1, 1�g.

Theorem 3.2. �ðLÞ ¼ f� : 
UM � Re� � 
Umg

Proof. Let Pass ¼ f� : 
UM � Re� � 
Umg. Then Pass is a closed convex
set. For any � 62Pass, the distance d from � to Pass is positive. By applying
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the technique of integration by parts, it is easy to check that for any
g 2 DðLÞ, kgk¼ 1,

2ReðLg, gÞ ¼ ðLg, gÞ þ ðg,LgÞ

¼

Z a


a

Z 1


1


�
@g

@x

Uðx,�Þgðx,�Þ

� �
gðx,�Þ dx d�

þ

Z a


a

Z 1


1

gðx,�Þ 
�
@ �gg

@x

 Uðx,�Þ gðx,�Þ

� �
dx d�

¼ 
2

Z a


a

Z 1


1

Uðx,�Þjgðx,�Þj2 dx d�

This shows that ðLg, gÞ 2Pass, while g 2 DðLÞ, and kgk¼ 1. Hence for any
g 2 DðLÞ, kgk¼ 1,

d � j�
 ðLg, gÞj ¼ jðð�
 LÞg, gÞj � kð�
 LÞgk:

Hence dkgk � kð�
 LÞgk, for any g 2 DðLÞ. This shows that (�
L)
1

exists and is continuous. The emptiness of R�(L) follows � 2 
ðLÞ. Therefore
�ðLÞ � f� : 
UM � Re� � 
Umg.

On the other hand, let �ð�Þ ¼ ð1=2aÞ
R a


a Uðs,�Þ ds. Then �(�) is
continuous in [
1, 1] and ½Um,UM � ¼ f�ð�Þ : � 2 ½
1, 1�g, since U(x,�) is
continuous in ½
a, a� � ½
1, 1�, and Um � Uðx,�Þ � UM .

For any 0 < �0 < 1, and ">0, there exists minð12 , "Þ > � > 0 such that
j�ð�Þ 
�ð�0Þj < ", for any � in ½�0,�0 þ �Þ � ð0, 1�

Choosing the following set of functions:

g�ðx,�Þ ¼ exp 

a 
 x

2a�

Z a


a

Uðs,�Þ ds 

1

�

Z x


a

Uðs,�Þ ds þ i
n�

a
x

� �
b�ð�Þ,

n ¼ 0,�1,�2, . . .

where

b�ð�Þ ¼

1ffiffiffi
�

p , � 2 ð�0 þ �2,�0 þ �Þ

0, otherwise

8<
:

we may find that g� 2 DðLÞ, and

kg�k
2
¼

1

�

Z a


a

dx

Z �0þ�

�0þ�2

exp 

a
 x

a�

Z a


a

Uðs,�Þds

2

�

Z x


a

Uðs,�Þds

� �
d�

�
1

�

Z a


a

dx

Z �0þ�

�0þ�2

exp

4aUM

�0

� 

d�

¼ 2að1
 �Þ exp

4aUM

�0

� 

> a exp


4aUM

�0

� 
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�ð�0Þ 
 i
n�

a
�0

� �

 L

� �
g�

���� ���2

� 2

Z a


a

dx

Z �0þ�

�0þ�2

½�ð�Þ 
�ð�0Þ�
2
jg�ðx,�Þj2 d�

�

þ

Z a


a

dx

Z �0þ�

�0þ�2

n�

a
ð�
 �0Þ

h i2

jg�ðx,�Þj2 d�

�

< 4a"2
ð1 
 �Þ þ

4n2�2

a
�2
ð1 
 �Þ

< 4a þ
4n2�2

a

 !
"2:

Therefore 
�ð�0Þ 
 iðn�=aÞ�0 2 �ðLÞ. The arbitrariness of �0 2 ð0, 1Þ
and n follows f
�ð�Þ 
 iðn�=aÞ� : � 2 ð0, 1Þ, n ¼ 0, �1, �2, . . .g � �ðLÞ:
The similar procedure shows that f
�ð�Þ 
 iðn�=aÞ� : � 2 ð
1, 0Þ, n ¼

0, �1, �2, . . .g � �ðLÞ. The closeness of �(L) leads to the inverse inclusion
f� : 
UM � Re� � 
Umg � �ðLÞ. Therefore we complete the proof.

4. SPECTRUM OF T

In this section, we further discuss the spectrum of T. First we show that
the left half plane is contained in the resolvent set of T. Finally we show the
possible accumulation points of isolated eigenvalues in the right half plane lie
in the line Re� ¼ 
Um by following the outline of Ref. [9]. However, very
strict conditions imposed on U(x,�) and kðx,�,�0

Þ in Ref. [9] are not satisfied
here, say, kðx,�,�0

Þ cannot be written in the form of kðx,�,�0
Þ ¼

j�0
j

 ~�� ~kkðx,�,�0

Þ, �0
6¼ 0 as Ref. [9]. Where ~�� is a real constant less than 1,

@ ~kk=@� and @ ~kk=@�0, are uniformly bounded.

Lemma 4.1.

(1) For every � with Re� < 
UM , kðL 
 �I Þ
1
k � ð
Re�
 UMÞ


1;
(2) Let �M ¼ maxf�ðxÞ : jxj � ag. Then kKk � ð�1=�0Þ�M .

Proof.

(1) For every � with Re� < 
UM , g 2 DðLÞ,

ReððL 
 �Þg, gÞ

¼ ð
Re�
 UMÞðg, gÞ þ

Z a


a

Z 1


1

ðUM 
 Uðx,�ÞÞjgðx,�Þj2 dx d�



1

2

Z a


a

Z 1


1

�
@g

@x
gðx,�Þ þ �

@ �gg

@x
gðx,�Þ

� �
dx d�

� ð
Re�
 UMÞkgk2,
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so kðL 
 �Þgk kgk � jððL 
 �Þg, gÞj � jReððL 
 �Þg, gÞj � ð
Re�
 UMÞkgk2

This shows that kðL 
 �IÞ
1
k � ð
Re�
 UMÞ


1;
(2) Since

kðx,�,�0
Þ ¼

�ðxÞ

2
�

�ð�0
Þða þ xÞ þ �ð�0

Þða 
 xÞ

�ð�Þða þ xÞ þ �ð�Þða 
 xÞ
�

�M

2

�1

�0

,

and

kkgk2
¼

Z a


a

Z 1


1

Z 1


1

kðx,�,�0
Þgðx,�0

Þ

����
����
2

dx d�

�

Z a


a

Z 1


1

Z 1


1

kðx,�,�0
Þ

�� ��2 d�0

� 
 Z 1


1

gðx,�0
Þ

�� ��2 d�0

� 

dx d�

� �2
M

�1

�0

� 
2

kgk2,

So kKk � ð�1=�0Þ�M .

Theorem 4.1. For every � with Re� < 
UM 
 ð�1=�0Þ�M, � 2 
ðTÞ.

Proof. For every � with Re� < 
UM 
 ð�1=�0Þ�M, kðL 
 �Þ
1Kk �

kðL 
 �Þ
1
k kKk < ð
Re�
 UMÞ


1
� ð�1=�0Þ�M < 1. So T 
 � ¼ ðL 
 �Þ �

ðI þ ðL 
 �Þ
1KÞ has bounded inverse operator. The emptiness of R�ðTÞ

concludes that � 2 
ðTÞ.

Lemma 4.2.
[9] For every � with Re� > 
Um, �I 
 L is invertible and

kð�I 
 LÞ
1
k � ðRe�þ UmÞ


1, and

ð�I 
 LÞ
1� ¼

1 
 exp 

1

�

Z a


a

ð�þ Uðs,�ÞÞ ds

� �� �
1

�ðJ1�þ J2�Þ, if � > 0,

1 
 exp
1

�

Z a


a

ð�þ Uðs,�ÞÞ ds

� �� �
1

�ðJ3�þ J4�Þ, if � < 0:

8>>>>>>>><
>>>>>>>>:

where

J1�ðx,�Þ ¼
1

�

Z x


a

exp 

1

�

Z x

x0

ð�þ Uðs,�ÞÞ ds

� �
�ðx0,�Þ dx0,

J2�ðx,�Þ ¼
1

�

Z a

x

exp 

1

�

Z x

x0

ð�þUðs,�ÞÞ ds

��

þ

Z a


a

ð�þUðs,�ÞÞ ds

��
�ðx0,�Þ dx0,
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J3�ðx,�Þ ¼ 

1

�

Z a

x

exp
1

�

Z x0

x

ð�þUðs,�ÞÞ ds

" #
�ðx0,�Þ dx0,

J4�ðx,�Þ ¼ 

1

�

Z x


a

exp
1

�

Z x0

x

ð�þ Uðs,�ÞÞ ds

"(

þ

Z a


a

ð�þ Uðs,�ÞÞ ds

��
�ðx0,�Þ dx0,

Theorem 4.2.

(1) For every � with Re� > 
Um, Kð�I 
 LÞ
1K is a compact opera-
tor on H;

(2) Suppose � > � > 
Um. Then for every " > 0, a positive �0

independent of � 2 ½�, �� exists such that kKð�I 
 LÞ
1Kk < "
uniformly in f� ¼ �þ i� : � 2 ½�, ��, j�j > �0g.

Proof. For every � with Re� > 
Um, and � 2 H, a tedious calculation
follows that

Kð�I 
 LÞ
1K� ¼

Z a


a

Z 1


1

K�ðx,�, x0,�0
Þ�ðx0,�0

Þ dx0 d�0

where

K�ðx,�,x0,�0
Þ

¼

Z 1

0

1

t
1 
 exp 


1

t

Z a


a

ð�þ Uðs,�ÞÞ ds

� �� �
1

� fkðx,�,�tÞkðx0,�t,�0
Þ exp 


�

t

Z x

x0

ð�þ Uðs,�tÞÞ ds

� �

þ kðx,�, 
�tÞkðx0, 
�t,�0
Þ exp

�

t

Z x

x0

ð�þ Uðs, 
�tÞÞ ds

�



1

t

Z a


a

ð�þ Uðs, 
�tÞÞ ds

��
dt

¼
X1
n¼0

Z 1

0

1

t
exp 


n

t

Z a


a

ð�þ Uðs,�ÞÞ ds

� ��
kðx,�,�tÞkðx0,�t,�0

Þ

� exp 

�

t

Z x

x0

ð�þUðs,�tÞÞ ds

� �
þ kðx,�, 
�tÞkðx0, 
�t,�0

Þ

� exp
�

t

Z x

x0

ð�þUðs, 
�tÞÞ ds 

1

t

Z a


a

ð�þUðs, 
�tÞÞ ds

� ��
dt
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¼
X1
n¼0

ðPn þQnÞ,

Pn � Pnðx, x0,�,�0,�,�Þ

¼

Z 1

0

1

t
exp 


n

t

Z a


a

ð�þ Uðs,�ÞÞ ds

� �
kðx,�,�tÞkðx0,�t,�0

Þ

� exp 

�

t

Z x

x0

ð�þ Uðs,�tÞÞ ds

� �
,

Qn � Qnðx, x0,�,�0,�,�Þ

¼

Z 1

0

1

t
exp 


n

t

Z a


a

ð�þ Uðs,�ÞÞ ds

� �
kðx,�, 
�tÞkðx0, 
�t,�0

Þ

� exp
�

t

Z x

x0

ð�þ Uðs, 
�tÞÞ ds 

1

t

Z a


a

ð�þ Uðs, 
�tÞÞ ds

� �
dt,

and

� ¼
1, if x � x0,

1, if x < x0:

�

(1) Let kM ¼ ð�M=2Þð�1=�0Þ. Then jkðx,�,�0
Þj < kM , and an integra-

tion by parts concludes

jPn þ Qnj � 2k2
M

Z 1

0

1

t
exp 


2na

t
ð�þ UmÞ

� �
dt

¼ 2k2
M

Z þ1

1

1

t
exp½
2nað�þUmÞt� dt

� 

2k2

M

2anð�þ UmÞ

�

exp½
2nað�þ UmÞ�

þ

Z þ1

1

1

t2
exp½
2anð�þ UmÞt� dt

�

<
2k2

M

2að�þUmÞ

exp½
2nað�þ UmÞ�

n

�
2k2

M

2að� þ UmÞ

exp½
2nað� þ UmÞ�

n

Xþ1

n¼0

jPn þQnj �
2k2

M

2að�þUmÞ

Xþ1

n¼0

exp½
2nað�þUmÞ�

n
� C1 < þ1: ð4:1Þ

Therefore
R a


a

R 1


1

R a


a

R 1


1 jK�ðx,�, x0,�0
Þj

2 dx d� dx0 d�0 < þ1. This shows
that Kð�I 
 LÞ
1K is a compact operator in H.
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In addition, for any " > 0, there exists an integer N0 such that

Xþ1

n¼N0þ1

jPn þ Qnj <
"2

48C1�
2

ð4:2Þ

(2) Suppose � > � > 
Um, � 2 j�, �j.

kKð�I 
 LÞ
1Kk
2

�

Z a


a

Z 1


1

Z a


a

Z 1


1

jK�ðx,�, x0,�0
Þj

2 dx d� dx0d�0

� C1

Z a


a

Z 1


1

Z a


a

Z 1


1

jK�ðx,�, x0,�0
Þj dx d� dx0d�0

� C1

Z a


a

Z 1


1

Z a


a

Z 1


1

XN0

n¼0

jPnj þ
XN0

n¼0

jQnj

 

þ
Xþ1

n¼N0þ1

jPn þ Qnj

!
dx d� dx0d�0

¼ C1

XN0

n¼0

Z a


a

Z 1


1

Z a


a

Z 1


1

jPnj dx d� dx0d�0

þ C1

XN0

n¼0

Z a


a

Z 1


1

Z a


a

Z 1


1

jQnj dx d� dx0d�0

þ C1

Z a


a

Z 1


1

Z a


a

Z 1


1

Xþ1

n¼N0þ1

jPn þQnj

 !
dx d� dx0 d�0, ð4:3Þ

By Eq. (4.2), the third term of the right side of Eq. (4.3) is less than "2=3.
In the following, let’s estimate the first term of the right side of Eq. (4.3).

Suppose �0, �00
2 ½�, ��, and �0 < �00.

jPnðx, x0,�,�0,�0,�Þ 
 Pnðx, x0,�,�0,�00,�Þj

¼

����
Z 1

0

1

t
kðx,�,�tÞkðx0,�t,�0

Þ exp 

1

t
n

Z a


a

ðUðs,�tÞ 
 UmÞ ds

��

þ�

Z x

x0

ðUðs,�tÞ 
 UmÞ ds

��
exp 


2an þ jx 
 x0
j

t
ð�0

þUmÞ

� ��


 exp 

2an þ jx 
 x0

j

t
ð�00

þ UmÞ

� ��
exp


2an þ jx 
 x0
j

t
�i

� �
dt

����
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� k2
M

Z 1

0

1

t
exp 


2an þ jx 
 x0
j

t
ð�0

þ UmÞ

� �

� 1 
 exp 

2an þ jx 
 x0

j

t
ð�00


 �0
Þ

� �� �
dt

¼ k2
M

Z þ1

2anþjx
x0j

1

t
exp½
ð�0

þUmÞt�f1 
 exp½
ð�00

 �0

Þt�g dt

� k2
M

Z þ1

2an

1

t
exp½
ð�0

þ UmÞt�f1 
 exp½
ð�00

 �0

Þt�g dt

� k2
M

Z þ1

T0

1

t
exp½
ð�0

þ UmÞt� dt þ k2
M

Z T0

2an

1

t
exp½
ð�0

þ UmÞt�

� f1 
 exp½
ð�00

 �0

Þt�g dt

From

lim
T0!þ1

Z þ1

T0

1

t
exp½
ð�0

þ UmÞt� dt ¼ 0,

one can easily see that there exists 0 < �0, independent of �, such that

Pnðx, x0,�,�0,�0,�Þ 
 Pnðx, x0,�,�0,�00,�Þ
�� ��

<
"2

96a2C1ðN0 þ 1Þ
, as j�0


 �00
j < �0 ð4:4Þ

Moreover, let � ¼ �1 � �2 � � � � � �n ¼ �, j�i 
 �iþ1j < �0, i ¼ 1, 2, . . . ,
n 
 1. Then

Pnðx, x0,�,�0,�i,�Þ

¼

Z 1

0

1

t
kðx,�,�tÞkðx0,�t,�0

Þ exp 

1

t
n

Z a


a

ð�i þUðs,�tÞÞ ds

��

þ�

Z x

x0

ð�i þ Uðs,�tÞÞ ds

��
exp 


2an þ jx 
 x0
j

t
�i

� �
dt

¼

Z þ1

2anþjx
x0 j

1

t
k x,�,

2an þ jx 
 x0
j

t
�

� 

k x0,

2an þ jx 
 x0
j

t
�,�0

� 


� exp 

t

2an þ jx 
 x0j
n

Z a


a

�i þ U s,
2an þ jx 
 x0

j

t
�

� 
� 

ds

��

þ �

Z x

x0

ð�i þ U s,
2an þ jx 
 x0

j

t
�

� 


ds

��
expð
t�iÞ dt
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This shows that for fixed x, x0, �, �0, �i, Pn is a Fourier coefficient of an
integrable function. So

lim
j�j!þ1

jPnðx,x0,�,�0,�i,�Þj ¼ 0:

By Lebesgue convergence theorem,

lim
j�j!þ1

Z a


a

Z 1


1

Z a


a

Z 1


1

jPnðx, x0,�,�0,�i,�Þj dx d� dx0d�0
¼ 0:

This shows that there exists a �0
0 > 0, such that for any �i, 1 � i � n,

Z a


a

Z 1


1

Z a


a

Z 1


1

jPnðx, x0,�,�0,�i,�Þj dx d� dx0d�0

<
"2

6C1ðN0 þ 1Þ
, as j�j > �0

0, ð4:5Þ

Suppose �i0 � � < �i0þ1, 1 � i0 < n. Then by Eqs. (4.4) and (4.5),

Z a


a

Z 1


1

Z a


a

Z 1


1

jPnðx, x0,�,�0,�,�Þj dx d� dx0d�0

�

Z a


a

Z 1


1

Z a


a

Z 1


1

jPnðx, x0,�,�0,�,�Þ 
 Pnðx, x0,�,�0,�i0 ,�Þj dx d� dx0 d�0

þ

Z a


a

Z 1


1

Z a


a

Z 1


1

jPnðx, x0,�,�0,�i0 ,�Þj dx d� dx0 d�0

<
"2

3C1ðN0 þ 1Þ

So the first term of the right side of Eq. (4.3) is less than "2=3 as j�j > �0
0.

The same reason shows that there exists �00
0 > 0, independent of

� 2 j�, �j, such that the second term of the right side of Eq. (4.3) is less
than "2=3 as j�j > �00

0.
Therefore for every " > 0, a positive �0 ¼ maxf�0

0,�
00
0g independent of

� 2 ½�, �� exists such that kKð�I 
 LÞ
1Kk < " uniformly in f� ¼ �þ i� :
� 2 ½�, ��, j�j > �0g.

Up to now, one can easily conclude our main theorem by [Theorem
5.35, p. 244, 10] and our Theorems 3.2 and 4.2.

Theorem 4.3. The transport operator A decomposes the spectral plane � as
follows.

(1) f� : Re� < 
UM 
 ð�1=�0Þ�Mg � 
ðAÞ.
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(2) f� : 
UM � Re� � 
Umg � �ðAÞ.
(3) f� : Re� > 
UMg \ �ðAÞ contains at most countable isolated

eigenvalues of A with finite algebraic multiplicity, and the possible
accumulation points of them only appear on the line Re� ¼ 
Um.
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