
XXX. Normal Mode Analysis 

 

Derivation of the normal mode equation 

Assume a protein consists of 𝑁 atoms. The position of the 𝑖th atom is 𝑥𝑖, 𝑦𝑖 , 𝑧𝑖 . The 
equilibrium position of 𝑖th atom is 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 . If a system is in equilibrium, the forces acting 
on it are equal to zero. The potential energy function can be expanded as a Taylor series 
around the equilibrium position: 
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Since the forces are equal to zero, the first derivatives are zero in eq. 1. From eq. 1, the 
partial derivatives can be derived as: 
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According to Newton’s law, 
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In matrix form, 
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In a compact form, 
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or 
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where 𝐇 = 𝐌−1𝐕 is called the Hessian matrix. 

If 

𝐇𝐚𝑛 = 𝜆𝑛𝐚𝑛, 

then 

cos(√𝜆𝑛𝑡 + 𝛿𝑛)𝐚𝑛 

is one solution to eq. 2. This implies that the vibration frequency in the direction 𝐚𝑛 is √𝜆𝑛. 

The eigenvectors of 𝐇 are called the normal mode vectors; the corresponding eigenvalues 
are called normal modes. The modes are the square of the angular frequencies with which 
the particles vibrate in the direction of the corresponding eigenvectors. 

The general solution to eq. 2 has the form 

𝐪 = ∑ 𝑐𝑛cos

𝑁

𝑛=1

(√𝜆𝑛𝑡 + 𝛿𝑛)𝐚𝑛 

For a large protein, it is difficult to implement the method for two challenges: the 
determine the equilibrium position; to compute the eigenvectors and eigenvalues. 
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